4,540 | 34 | 74 |
下载次数 | 被引频次 | 阅读次数 |
生命活动加速地球有机界和无机界之间的循环,从而成为驱动地球生物圈、岩石圈和大气圈层物质循环和能量流动的主要动力。生态系统是由生物群落及其环境组成的统一整体,生物圈是地球上最大的生态系统。根据生态系统的组成及其演化阶段,综合全球重大地质事件和寒武纪大爆发动物界成型,本文提出地球生态系统可分为原始进化生态系统、初级进化生态系统和现代进化生态系统三大演化阶段。原始进化生态系统以陆核形成、成熟,早期超大陆聚合、裂解和潘基亚大陆形成早期阶段之前等不稳定大陆演化为地质背景,生物类群主要以蓝藻(又称蓝细菌)和真核藻类为生产者,以细菌微生物为分解者的2极食物链结构,生活底质仅以海洋底质(岩石)和沉积物为界面,在原始海洋中仅以海水、海底为介质的2相(液相和固相)生态环境,时间包括太古宙和元古宙的大部分地史时间,代表着以菌藻类初级生产者诱导的生态系统形成和演化,反映了生物圈与岩石圈物质循环的原始阶段。初级进化生态系统以冈瓦纳大陆聚合为地质背景,现代板块构造建立、全球板块联动,大陆风化加强,时间上包括埃迪卡拉纪末到早古生代的加里东运动时期。通过寒武纪大爆发,地球首次诞生了动物,代表着宏体消费者出现,由生产者、消费者和分解者组成的完整3极食物链结构形成,地球进入了以动物消费需求牵引的生态系统循环。消费者以海洋无脊椎动物为主,出现底栖、游移、浮游和游泳等现代海洋群落生态类型,期间礁体动物出现,生物礁繁盛,包壳、刻蚀(污损)生物开始大量增殖,由于生物的相互作用导致海底岩石生物风化急速加快,生物圈和岩石圈物质循环在海洋中迅速加强,代表地球现代复杂海洋生态系统初步形成。现代进化生态系统以潘基亚大陆聚散和古新特提斯构造域形成演化为地质背景,初级生产者发生重大改变、陆地植物出现,动植物登陆,陆地生态系统逐步形成、发展和繁盛。海陆高级消费者不断出现、演替,由生产者、消费者和分解者组成3极食物链结构稳定循环,系统能自我修复和自我完善,不同时期部分动物已跨越陆地和海洋两个生态系统进行繁衍生息,陆地生产者与分解者通过河流交相辉映、周而复始、循环不断。高山、河流和海洋生物生态分层分带明显,不同动物在陆地、海洋和大气不同界面(液相、气相和固相)穿梭,不同介质(海水、陆地和空气)交流互动。脊椎动物鱼类登陆从而导致四足动物(两栖类、爬行类和哺乳动物包括人类)的后续发生,不同地史时期不同类型的脊椎动物呈现"登陆下海"生态奇观,生态群落和营养结构复杂多变,生态类型繁多,时间横跨晚古生代、中生代和新生代直至现在,代表海陆交互的复杂地球现代进化生态系统的形成、发展、演替和繁盛。生物圈、岩石圈、水圈和大气圈以生物为纽带,物质交流和能量流动速度加快,成为现代地球生态系统的最大特征。因此,前寒武纪诞生了原始生命并衍生了现代海洋生态系统的初级生产者(菌藻类),地球进入初级生产者维持的原始进化生态系统;寒武纪大爆发诞生了地球动物消费者,历时4千万年地球动物界成型、建立了现代动物系统框架,之后5亿年再无新的动物门类出现,现代海洋生态系统格局形成,地球开启了动物需求驱动的初级进化生态系统;晚志留世和早泥盆世后陆地生态系统诞生,历时3亿年植物界成型,地球原始生产力不断革新,动植物海陆交互,现代生态系统形成,不断修复并完善。对比研究动物消费驱动的地球初级进化生态系统和高级生产者植物引导的现代进化生态系统的演化过程对理解地球的宜居性演化有重要意义。
Abstract:Biological activity is a major triggering factor driving Earth′s organic and inorganic cycles across the biosphere, lithosphere and atmosphere. A key question in Earth′s ecosystem evolution is when and how different organisms emerged and flourished, and how their appearance impacted the hydrosphere-atmosphere-lithosphere cycles?The biosphere is the largest ecosystem on our planet and based on the major geological phases of continental evolution and geobiological records, the earth′s ecosystem can be divided into three macro-evolutionary phases: The Preliminary, Primary and Modern Evolutionary Ecosystems(PREE, PEE and MEE). The Preliminary Evolutionary Ecosystem(PREE) is composed solely of producers and decomposers that dominated during the Archean and Proterozoic. This primary producer-induced microbial/algae community was developed during the early continental rifting of Nuna(Columbia) and formation of Rodinia.Such a low-level microbial producing world resulted in the circulation of materials in the biosphere and lithosphere, for the first time on Earth. The Cambrian Explosion of metazoans around the Ediacaran-Cambrian boundary interval gave rise to the sudden appearance of essentially all of the readily fossilizable modern animal groups as macro-consumers in Earth′s oceans. This explosive radiation event for the first time led to the emergence and diversification of animals on earth and to the establishment of complex trophic webs with animals as consumers and microbes and algae that were succeeded from the PREE as producers. The Primary Evolutionary Ecosystem(PEE) started during late Precambrian time and developed continuously until the end of the Silurian or the onset of Devonian. In a geological context, the PEE took place during a global tectonic reorganization as Gondwana was assembled and the Proto-Tethys Ocean was subducted. The Modern Evolutionary Ecosystem(MEE) refers herein to the succeeding terrestrial and marine communities at the background of the supercontinent Pangea assembly and rifting, which coincide with the emergence of land plants and terrestrial animals after the Silurian period(420 mys). The MEE is characterised by land plants that became the most-efficient primary producers at this time, providing plenty of nourishment and energy to both terrestrial and marine ecosystems with diversified animals living in seas, on land and flying in air. An integrative and comparative study of the evolution of these evolutionary ecosystems triggered by animal consumption and the MEE guided by land plant producers is of great significance for understanding the evolution of earth′s habitability.
[1] WILDE S A,VALLEY J W,PECK W H,et al.Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago [J].Nature,2001,409(6817):175-178.
[2] MULKIDJANIAN A Y,BYCHKOV A Y,DIBROVA D V,et al.Open questions on the origin of life at anoxic geothermal fields [J].Origins of Life and Evolution of Biospheres,2012,42(5):507-516.
[3] MAYER C,SCHREIBER U,DáVILA M J.Periodic vesicle formation in tectonic fault zones:An ideal scenario for molecular evolution [J].Origins of Life and Evolution of Biospheres,2015,45(1):139-148.
[4] SCHREIBER U,LOCKER-GRüTJEN O,MAYER C.Hypothesis:Origin of life in deep-reaching tectonic faults [J].Origins of Life and Evolution of Biospheres,2012,42(1):47-54.
[5] SCHOPF J W.Microfossils of the Early Archean Apex chert:New evidence of the antiquity of life [J].Science,1993,260:640-646.
[6] NUTMAN A P,BENNETT V C,FRIEND C R L,et al.Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures [J].Nature,2016,537(7621):535-538.
[7] SCHREIBER U,MAYER C,SCHMITZ O J,et al.Organic compounds in fluid inclusions of Archean quartz:Analogues of prebiotic chemistry on early Earth [J].PLoS One,2017,12(6):e0177570.
[8] KNOLL A H,NOWAK M A.The timetable of evolution [J].Science Advances,2017,3(5):e1603076.
[9] JOHNSON T E,BROWN M,GARDINER N J,et al.Earth′s first stable continents did not form by subduction [J].Nature,2017,543(7644):239-242.
[10] LIU C T,HE Y S.Rise of major subaerial landmasses about 3.0 to 2.7 billion years ago [J].Geochemical Perspectives Letters,2021,18:1-5.
[11] MOJZSIS S J,HARRISON T M,PIDGEON R T.Oxygen-isotope evidence from ancient zircons for liquid water at the Earth′s surface 4,300 Myr ago [J].Nature,2001,409(6817):178-181.
[12] DODD M S,PAPINEAU D,GRENNE T,et al.Evidence for early life in Earth′s oldest hydrothermal vent precipitates [J].Nature,2017,543(7643):60-64.
[13] 戎嘉余.生物演化与环境 [M].合肥:中国科学技术大学出版社,2018.
[14] TASHIRO T,ISHIDA A,HORI M,et al.Early trace of life from 3.95 Ga sedimentary rocks in Labrador,Canada [J].Nature,2017,549(7673):516-518.
[15] BROCKS J J,LOGAN G A,BUICK R,et al.Archean molecular fossils and the early rise of eukaryotes [J].Science,1999,285(5430):1033-1036.
[16] BARGHOORN E S,TYLER S A.Microorganisms from the Gunflint Chert [J].Science,1965,147(3658):563-577.
[17] ZHU M,AHLBERG,P E,PAN Z H,et al.A Silurian maxillate placoderm illuminates jaw evolution [J].Science,2016,354(6310):334-336.
[18] TANG Q,PANG K,YUAN X L,et al.A one-billion-year-old multicellular chlorophyte [J].Nature Ecology & Evolution,2020,4(4):543-549.
[19] FALKOWSKI P G,KATZ M E,KNOLL A H,et al.The evolution of modern eukaryotic phytoplankton [J].Science,2014,305(5862):354-360.
[20] TANG Q,PANG K,XIAO S,et al.Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance[J].Precambrian Research,2013,236:157-181.
[21] TANG Q,HUGHES N C,MCKENZIE N R,et al.Late Mesoproterozoic-early Neoproterozoic organic-walled microfossils from the Madhubani Group of the Ganga Valley,Northern India[J].Palaeontology,2017,60(6):869-891.
[22] YUAN X L,CHEN Z,XIAO S H,et al.The Lantian biota:A new window onto the origin and early evolution of multicellular organisms [J].Chinese Science Bulletin,2013,58(7):701-707.
[23] CHEN Z,CHEN X,ZHOU C M,et al.Late Ediacaran trackways produced by bilaterian animals with paired appendages [J].Science Advances,2018,4(6):easo6691.
[24] 华洪,蔡耀平,闵筱,等.埃迪卡拉纪末期管状动物的 “大辐射”[J].西北大学学报 (自然科学版),2020,50(2):141-174.HUA H,CAI Y P,MIN X,et al."Tubular animal radiation" at the terminal Ediacaran stage[J].Journal of Northwest University (Natural Science Edition),2020,50(2):141-174.
[25] CLAPHAM M E,NARBONNE G M.Ediacaran epifaunal tiering [J].Geology,2002,30(7):627-630.
[26] CHEN Z,ZHOU C M,YUAN X L,et al.Death march of a segmented and trilobate bilaterian elucidates early animal evolution [J].Nature,2019,573(7774):412-415.
[27] ZHURAVLEV A Y,WOOD R A,PENNY A M.Ediacaran skeletal metazoan interpreted as a lophophorate [J].Proceedings of the Royal Society B:Biological Sciences,2015,282(1818):20151860.
[28] SHORE A,WOOD R.Environmental and diagenetic controls on the morphology and calcification of the Ediacaran metazoan Cloudina [J].Scientific Reports,2021,11:12341.
[29] SHU D G,ISOZAKI Y,ZHANG X L,et al.Birth and early evolution of metazoans [J].Gondwana Research,2014,25(3):884-895.
[30] ZHANG X L,SHU D G,HAN J,et al.Triggers for the Cambrian Explosion:Hypotheses and problems [J].Gondwana Research,2014,25(3):896-909.
[31] ZHANG X L,CHANG C,CUI L H,et al.Ecosystem reconstruction during the Cambrian Explosion [J].Paleontological Research,2021,25(4):305-314.
[32] WOOD R,LIU A G,BOWYER F,et al.Integrated records of environmental change and evolution challenge the Cambrian Explosion [J].Nature Ecology & Evolution,2019,3(4):528-538.
[33] BOTTJER D J.Paleoecology:Past,present and future [M].Chichester,UK:John Wiley & Sons,2016.
[34] GABRIELA MáNGANO M,BUATOIS L A.The Cambrian revolutions:Trace-fossil record,timing,links and geobiological impact [J].Earth-Science Reviews,2017,173:96-108.
[35] BICKNELL R D C,PATERSON J R.Reappraising the early evidence of durophagy and drilling predation in the fossil record:Implications for escalation and the Cambrian Explosion [J].Biological Reviews,2018,93(2):754-784.
[36] 张兴亮.寒武纪大爆发的过去、现在与未来[J].古生物学报,2021,60(1):10-24.ZHANG X L.Cambrian Explosion:Past,present,and future [J].Acta Palaeontologica Sinica,2021,60(1):10-24
[37] ZHU M Y,YANG A H,YUAN J L,et al.Cambrian integrative stratigraphy and timescale of China [J].Science China Earth Sciences,2019,62(1):25-60.
[38] BENTON M J,HARPER D A T.Introduction to paleobiology and the fossil record [M].New Jersey:John Wiley & Sons,2020.
[39] ZHU M,YU X,AHLBERG P E,et al.A Silurian placoderm with osteichthyan-like marginal jaw bones [J].Nature,2013,502(7470):188-193.
[40] KNOLL A H.A new molecular window on early life[J].Science,1999,285(5430):1025-1026.
[41] WANG P F,YAO S Q,JIN C,et al.Key reservoir parameter for effective exploration and development of high-over matured marine shales:A case study from the Cambrian Niutitang Formation and the Silurian Longmaxi Formation,South China [J].Marine and Petroleum Geology,2020,121:104619.
[42] JIAO C,S?RENSEN I,SUN X P,et al.The Penium margaritaceum genome:Hallmarks of the origins of land plants [J].Cell,2020,181(5):1097-1111.e12.
[43] XIAO S H,MUSCENTE A D,CHEN L,et al.The Weng′an biota and the Ediacaran radiation of multicellular eukaryotes[J].National Science Review,2014,1(4):498-520.
[44] YUAN X,XIAO S,TAYLOR T N.Lichen-like symbiosis 600 million years ago [J].Science,2005,308(5724):1017-1020.
[45] JONES R W.Applications of palaeontology:Techniques and case studies [M].Cambridge:Cambridge University Press,2011.
[46] ZHENG Y F,ZHAO G C.Two styles of plate tectonics in Earth′s history [J].Science Bulletin,2020,65(4):329-334.
[47] ZHAI M G,PENG P.Origin of early continents and beginning of plate tectonics [J].Science Bulletin,2020,65(12):970-973.
[48] GERYA T V,STERN R J,BAES M,et al.Plate tectonics on the Earth triggered by plume-induced subduction initiation [J].Nature,2015,527(7577):221-225.
[49] TANG M,CHEN K,RUDNICK R L.Archean upper crust transition from mafic to felsic marks the onset of plate tectonics [J].Science,2016,351(6271):372-375.
[50] TORSVIK T H.The rodinia jigsaw puzzle [J].Science,2003,300(5624):1379-1381.
[51] ZHAO G C,CAWOOD P A,WILDE S A,et al.Review of global 2.1~1.8 Ga orogens:Implications for a pre-Rodinia supercontinent [J].Earth-Science Reviews,2002,59(1/4):125-162.
[52] ZHAO G C,WANG Y J,HUANG B C,et al.Geological reconstructions of the East Asian blocks:From the breakup of Rodinia to the assembly of Pangea [J].Earth-Science Reviews,2018,186:262-286.
[53] SIZOVA E,GERYA T,BROWN M.Contrasting styles of Phanerozoic and Precambrian continental collision [J].Gondwana Research,2014,25(2):522-545.
[54] BROWN M,KIRKLAND C L,JOHNSON T E.Evolution of geodynamics since the Archean:Significant change at the dawn of the Phanerozoic [J].Geology,2020,48(5):488-492.
[55] YAO L,YANG H,CHEN Z S,et al.Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater [J].Chemosphere,2021,273:128576.
[56] HOFFMAN P F.Did the breakout of Laurentia turn Gondwanaland inside out?[J].Science,1991,252(5011):1409-1412.
[57] GRAY D R,FOSTER D A,MEERT J G,et al.A Damara orogen perspective on the assembly of southwestern Gondwana [J].Geological Society,London,Special Publications,2008,294(1):257-278.
[58] SCHMITT R D S,FRAGOSO R D A,COLLINS A S.Suturing Gondwana in the Cambrian:The orogenic events of the final amalgamation [M]//Geology of Southwest Gondwana.Springer,Cham,2018:411-432.
[59] SCOTESE C R.A continental drift flipbook [J].Journal of Geology,2004,112(6):729-741.
[60] STAMPFLI G M,HOCHARD C,VéRARD C,et al.The formation of Pangea [J].Tectonophysics,2013,593:1-19.
[61] JOSEPH B,HENSGEN F,WACHENDORF M.Life cycle assessment of bioenergy production from mountainous grasslands invaded by lupine (Lupinus polyphyllus Lindl.) [J].Journal of Environmental Management,2020,275:111182.
[62] 翟明国,赵磊,祝禧艳,等.早期大陆与板块构造启动:前沿热点介绍与展望[J].岩石学报,2020,36(8):2249-2275.ZHAI M G,ZHAO L,ZHU X Y,et al.Review and overview for the frontier hotspot:Early continents and start of plate tectonics [J].Acta Petrologica Sinica,2020,36(8):2249-2275
[63] BAUMGARTNER R J,CARUSO S,FIORENTINI M L,et al.Sulfidization of 3.48 billion-year-old stromatolites of the Dresser Formation,Pilbara Craton:Constraints from in-situ sulfur isotope analysis of pyrite [J].Chemical Geology,2020,538:119488
[64] NUTMAN A P,BENNETT V C,FRIEND C R L,et al.Cross-examining Earth′s oldest stromatolites:Seeing through the effects of heterogeneous deformation,metamorphism and metasomatism affecting lsua (Greenland)~3 700 Ma sedimentary rocks [J].Precambrian Research,2019,331:105347.
[65] BEUKES N J,LOWE D R.Environmental control on diverse stromatolite morphologies in the 3 000 Myr Pongola Supergroup,South Africa [J].Sedimentology,1989,36(3):383-397.
[66] HOFMANN H J.Archean stromatolites as microbial archives [M]//Microbial sediments.Berlin,Heidelberg:Springer,2000:315-327.
[67] SOM S M,CATLING D C,HARNMEIJER J P,et al.Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints [J].Nature,2012,484(7394):359-362.
[68] VAN DER WESTHUIZEN W A,DE BRUIYN H,MEINTJES P G.The Ventersdorp supergroup:An overview [J].Journal of African Earth Sciences (and the Middle East),1991,13(1):83-105.
[69] SARKAR S,BANERJEE S,CHAKRABORTY P P.Microbial Mat Structures and role of microbes in Precambrian siliciclastic sedimentation:Evidence from Indian Proterozoic basins [J].Episodes,2020,43(1):164-174.
[70] XIAO S H,CHEN Z,PANG K,et al.The Shibantan Lagerst?tte:Insights into the Proterozoic-Phanerozoic transition [J].Journal of the Geological Society,2021,178(1):jgs2020-135.
[71] NARBONNE G M.The Ediacara biota:Neoproterozoic origin of animals and their ecosystems [J].Annual Review of Earth and Planetary Sciences,2005,33(1):421-442.
[72] SEILACHER A.Biomat-related lifestyles in the Precambrian [J].Palaios,1999,14(1):86-93.
[73] 袁训来.震旦生命[M].合肥:中国科学技术大学出版社,2019.
[74] 吴福元,万博,赵亮,等.特提斯地球动力学[J].岩石学报,2020,36(6):1627-1674.WU F Y,WAN B,ZHAO L,et al.Tethyan geodynamics [J].Acta Petrologica Sinica,2020,36(6):1627-1674.
[75] MARUYAMA P K,VIZENTIN-BUGONI J,OLIVEIRA G M,et al.Morphological and spatio-temporal mismatches shape a neotropical savanna plant-hummingbird network [J].Biotropica,2014,46(6):740-747.
[76] SANTOSH M,MARUYAMA S,SAWAKI Y,et al.The Cambrian Explosion:Plume-driven birth of the second ecosystem on Earth [J].Gondwana Research,2014,25(3):945-965.
[77] BUDD G E,JACKSON I S C.Ecological innovations in the Cambrian and the origins of the crown group phyla [J].Philosophical Transactions of the Royal Society B:Biological Sciences,2016,371(1685):20150287.
[78] LANDING E,ANTCLIFFE J B,GEYER G,et al.Early evolution of colonial animals (Ediacaran evolutionary radiation-Cambrian evolutionary radiation-great ordovician biodiversification interval) [J].Earth-Science Reviews,2018,178:105-135.
[79] HARPER D A T,CASCALES-MI?ANA B,SERVAIS T.Early Palaeozoic diversifications and extinctions in the marine biosphere:A continuum of change [J].Geological Magazine,2020,157(1):5-21.
[80] LIU W,CHANG C,YUN H,et al.A laminated microbial ecosystem at the summit of the Cambrian Explosion [J].Global and Planetary Change,2021,205:103619.
[81] SEILACHER A,PFLüGER F,KRUMBEIN W E,et al.From biomats to Benthic agriculture:A biohistoric revolution [M]//KRUMBEIN W E.Biostabilization of sediments.Oldenburg:Bibliotheks and Informationsystem del Carlvon Ossietzky Universitat,1994:97-105.
[82] BUATOIS L A,MáNGANO M G,MINTER N J,et al.Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic:The role of bioturbation and bioerosion [J].Science Advances,2020,6(33):eabb0618.
[83] MáNGANO M G,BUATOIS L A.The rise and early evolution of animals:Where do we stand from a trace-fossil perspective?[J].Interface Focus,2020,10(4):20190103.
[84] BOTTJER D J,HAGADORN J W,DORNBOS S Q.The Cambrian substrate revolution [J].GSA Today,2020,10(9):1-7.
[85] DORNBOS S Q,BOTTJER D J.Evolutionary paleoecology of the earliest echinoderms:Helicoplacoids and the Cambrian substrate revolution [J].Geology,2000,28(9):839-842.
[86] DORNBOS S Q,BOTTJER D J,CHEN J Y.Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota:Evidence for the Cambrian substrate revolution [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2005,220(1/2):47-67.
[87] BOTTJER D J.The Cambrian substrate revolution and early evolution of the phyla [J].Journal of Earth Science,2010,21(1):21-24.
[88] PLOTNICK R E,DORNBOS S Q,CHEN J Y.Information landscapes and sensory ecology of the Cambrian Radiation [J].Paleobiology,2010,36(2):303-317.
[89] DUNN C W,HEJNOL A,MATUS D Q,et al.Broad phylogenomic sampling improves resolution of the animal tree of life [J].Nature,2008,452(7188):745-749.
[90] DUNN C W,LEYS S P,HADDOCK S H D.The hidden biology of sponges and ctenophores [J].Trends in Ecology & Evolution,2015,30(5):282-291.
[91] RYAN J F,PANG K,SCHNITZLER C E,et al.The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution [J].Science,2013,342(6164):1242592.
[92] MOROZ L L,KOCOT K M,CITARELLA M R,et al.The ctenophore genome and the evolutionary origins of neural systems [J].Nature,2014,510(7503):109-114.
[93] TELFORD M J.Fighting over a comb[J].Nature,2016,529(7586):286.
[94] MOROZ L L,HALANYCH K M.Methodological misconceptions [J].Nature,2016,529(7586):286-287.
[95] SHU D G,MORRIS S C,HAN J,et al.Lower Cambrian vendobionts from China and early diploblast evolution [J].Science,2006,312(5774):731-734.
[96] YIN Z,ZHU M,DAVIDSON E H,et al.Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian [J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(12):E1453-E1460.
[97] TURNER E C.Possible poriferan body fossils in early Neoproterozoic microbial reefs [J].Nature,2021,596(7870):87-91.
[98] HAN J,KUBOTA S,UCHIDA H O,et al.Tiny sea anemone from the Lower Cambrian of China [J].PLoS One,2010,5(10):e13276
[99] GUO J F,HAN J,VAN ITEN H,et al.A fourteen-faced hexangulaconulariid from the early Cambrian (Stage 2) Yanjiahe Formation,South China [J].Journal of Paleontology,94(1):45-55.
[100] GUO J F,HAN J,VAN ITEN H,et al.A ten-faced hexangulaconulariid from Cambrian Stage 2 of South China [J].Journal of Paleontology,2021,95(5):957-964.
[101] EDGECOMBE G D,GIRIBET G,DUNN C W,et al.Higher-level metazoan relationships:Recent progress and remaining questions [J].Organisms Diversity & Evolution,2011,11(2):151-172.
[102] SHU D G,MORRIS S C,ZHANG X L.A Pikaia-like chordate from the Lower Cambrian of China [J].Nature,1996,384(6605):157-158.
[103] SHU D G,LUO H L,MORRIS S C,et al.Lower Cambrian vertebrates from south China [J].Nature,1999,402(6757):42-46.
[104] SHU D G,CHEN L,HAN J,et al.An early Cambrian tunicate from China [J].Nature,2001,411(6836):472-473.
[105] SHU D G.A paleontological perspective of vertebrate origin [J].Chinese Science Bulletin,2003,48(8):725-735.
[106] SHU D G,MORRIS S C,ZHANG Z F,et al.A new species of yunnanozoan with implications for deuterostome evolution [J].Science,2003,299(5611):1380-1384.
[107] SHU D G,MORRIS S C,HAN J,et al.Ancestral echinoderms from the Chengjiang deposits of China [J].Nature,2004,430(6998):422-428.
[108] SHU D G,MORRIS S C,ZHANG Z F,et al.The earliest history of the deuterostomes:The importance of the Chengjiang Fossil-Lagerst?tte [J].Proceedings of the Royal Society B:Biological Sciences,2010,277(1679):165-174.
[109] JANVIER P.Catching the first fish [J].Nature,1999,402(6757):21-22.
[110] RAMSK?LD L,HOU X G.New early Cambrian animal and onychophoran affinities of enigmatic metazoans [J].Nature,1991,351(6323):225-228.
[111] CHEN J Y,RAMSK?LD L,ZHOU G Q.Evidence for monophyly and arthropod affinity of Cambrian giant predators [J].Science,1994,264(5163):1304-1308.
[112] HOU X G,SIVETER D J,ALDRIDGE R J,et al.Collective behavior in an Early Cambrian arthropod [J].Science,2008,322(5899):224.
[113] 侯先光.澄江动物群:5.3 亿年前的海洋动物[M].昆明:云南科技出版社,1999.
[114] MA X,HOU X,EDGECOMBE G D,et al.Complex brain and optic lobes in an early Cambrian arthropod [J].Nature,2012,490(7419):258-261.
[115] CONG P Y,MA X Y,HOU X G,et al.Brain structure resolves the segmental affinity of anomalocaridid appendages [J].Nature,2014,513(7519):538-542.
[116] ZENG H,ZHAO F,NIU K,et al.An early Cambrian euarthropod with radiodont-like raptorial appendages [J].Nature,2020,588(7836):101-105.
[117] LIU J N,STEINER M,DUNLOP J A,et al.An armoured Cambrian lobopodian from China with arthropod-like appendages [J].Nature,2011,470(7335):526-530.
[118] FU D J,ORTEGA-HERNáNDEZ J,DALEY A C,et al.Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China [J].BMC Evolutionary Biology,2018,18(1):1-17.
[119] ORTEGA-HERNáNDEZ J,FU D J,ZHANG X L,et al.Gut glands illuminate trunk segmentation in Cambrian fuxianhuiids [J].Current Biology,2018,28(4):R146-R147.
[120] LIU Y,MELZER R R,HAUG J T,et al.Three-dimensionally preserved minute larva of a great-appendage arthropod from the early Cambrian Chengjiang biota [J].Proceedings of the National Academy of Sciences,2016,113(20):5542-5546.
[121] LIU Y,ORTEGA-HERNáNDEZ J,CHEN H,et al.Computed tomography sheds new light on the affinities of the enigmatic euarthropod Jianshania furcatus from the early Cambrian Chengjiang biota [J].BMC Evolutionary Biology,2020(1),20:1-17.
[122] LIU Y,EDGECOMBE G D,SCHMIDT M,et al.Exites in Cambrian arthropods and homology of arthropod limb branches [J].Nature Communications,2021,12:4619.
[123] GIRIBET G.Assembling the lophotrochozoan (=spiralian) tree of life [J].Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363(1496):1513-1522.
[124] MORRIS S C,CARON J B.Halwaxiids and the early evolution of the lophotrochozoans [J].Science,2007,315(5816):1255-1258.
[125] LAUMER C E,BEKKOUCHE N,KERBL A,et al.Spiralian phylogeny informs the evolution of microscopic lineages [J].Current Biology,2015,25(15):2000-2006.
[126] HALANYCH K M,BACHELLER J D,AGUINALDO A M,et al.Evidence from 18S ribosomal DNA that the lophophorates are protostome animals [J].Science,1995,267(5204):1641-1643.
[127] HALANYCH K M.The new view of animal phylogeny [J].Annual Review of Ecology,Evolution,and Systematics,2004,35(1):229-256.
[128] GIRIBET,G.New animal phylogeny:Future challenges for animal phylogeny in the age of phylogenomics [J].Organisms Diversity & Evolution,2016,16(2):419-426.
[129] LAUMER C E,FERNáNDEZ R,LEMER S,et al.Revisiting metazoan phylogeny with genomic sampling of all phyla [J].Proceedings of the Royal Society B:Biological Sciences,2019,286(1906):20190831.
[130] 张志飞,张志亮.寒武纪冠轮动物化石研究进展与假体腔动物的实证起源[J].自然杂志,2014,36(1):34-41.ZHANG Z F,ZHANG Z L.New fossil records of Cambrian Lophotrochozoans (Spiralian:Entoprocta) and their implication for pseudocoelomate origin [J].Chinese Journal of Nature,2014,36(1):34-41.
[131] ZHANG Z F,HAN J,ZHANG X L,et al.Pediculate brachiopod Diandongia pista from the Lower Cambrian of South China [J].Acta Geologica Sinica-English Edition,2003,77(3):288-293.
[132] ZHANG Z F,HAN J,ZHANG X L,et al.Soft tissue preservation in the Lower Cambrian linguloid brachiopod from South China [J].Acta Palaeontologica Polonica,2004,49(2):259-266.
[133] ZHANG Z F,SHU D G,HAN J,et al.New data on the lophophore anatomy of Early Cambrian linguloids from the Chengjiang Lagerst?tte,Southwest China [J].Carnets De Geologie,2004,Cg2004(4):L04.
[134] ZHANG Z F,SHU D G,HAN J,et al.Morpho-anatomical differences of the Early Cambrian Chengjiang and Recent lingulids and their implications [J].Acta Zoologica,2005,86(4):277-288.
[135] ZHANG Z F,SHU D G,HAN J,et al.New data on the rare Chengjiang (Lower Cambrian,South China) linguloid brachiopod Xianshanella haikouensis [J].Journal of Paleontology,2006,80(2):203-211.
[136] ZHANG Z F,SHU D G,HAN J,et al.A gregarious lingulid brachiopod Longtancunella chengjiangensis from the Lower Cambrian,South China [J].Lethaia,2007,40(1):11-18.
[137] ZHANG Z F,HAN J,ZHANG X L,et al.2007.Note on the gut preserved in the Lower Cambrian Lingulellotreta (Lingulata,Brachiopoda) from southern China [J].Acta Zoologica,2007,88(1):65-70.
[138] ZHANG Z F,SHU D G,EMIG C,et al.Rhynchonelliformean brachiopods with soft-tissue preservation from the early Cambrian Chengjiang lagerst?tte of South China [J].Palaeontology,2007,50(6):1391-1402.
[139] ZHANG Z F,ROBSON S P,EMIG C,et al.Early Cambrian radiation of brachiopods:A perspective from South China [J].Gondwana Research,2008,14(1/2):241-254.
[140] ZHANG Z F,LI G X,EMIG C C,et al.Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian,South China) [J].Geobios,2009,42(5):649-661.
[141] ZHANG Z F,HAN J,WANG Y,et al.Epibionts on the lingulate brachiopod Diandongia from the Early Cambrian Chengjiang Lagerst?te,South China [J].Proceedings of the Royal Society B:Biological Sciences,2010,277(1679):175-181.
[142] ZHANG Z F,HOLMER L E,OU Q,et al.The exceptionally preserved Early Cambrian stem rhynchonelliform brachiopod Longtancunella and its implications [J].Lethaia,2011,44(4):490-495.
[143] ZHANG Z F,HOLMER L E,POPOV L,et al.An obolellate brachiopod with soft-part preservation from the Early Cambrian Chengjiang Fauna of China [J].Journal of Paleontology,2011,85(3):460-463.
[144] ZHANG Z F,HOLMER L E,ROBSON S P,et al.First record of repaired durophagous shell damages in Early Cambrian lingulate brachiopods with preserved pedicles [J].Palaeogeography Palaeoclimatology Palaeoecology,2011,302(3/4):206-212.
[145] ZHANG Z F,LI G X,HOLMER L E,et al.An Early Cambrian agglutinated tubular lophophorate with brachiopod characters [J].Scientific Reports,2014,4:4682
[146] ZHANG Z F,ZHANG Z L,HOLMER L E,et al.First report of linguloid brachiopods with soft parts from the Lower Cambrian (Series 2,Stage 4) of the Three Gorges area,South China [J].Annales De Paléontologie,2015,101(3):167-177.
[147] ZHANG Z F,BROCK G A.New evolutionary and ecological advances in deciphering the Cambrian explosion of animal life [J].Journal of Paleontology,2018,92(1):1-2.
[148] ZHANG Z F,POPOV L E,HOLMER L E,et al.Earliest ontogeny of Early Cambrian acrotretoid brachiopods:First evidence for metamorphosis and its implications [J].BMC Evolutionary Biology,2018,18(1):42
[149] ZHANG Z F,HOLMER L E,LIANG Y,et al.The oldest ′Lingulellotreta′ (Lingulata,Brachiopoda) from China and its phylogenetic significance:Integrating new material from the Cambrian Stage 3-4 Lagerst?tten in eastern Yunnan,South China [J].Journal of Systematic Palaeontology,2020,18(11):945-973.
[150] ZHANG Z F,STROTZ L C,TOPPER T P,et al.An encrusting kleptoparasite-host interaction from the Early Cambrian [J].Nature Communications,2020,11(1):2625.
[151] ZHANG Z L,ZHANG Z F,MA J Y,et al.Fossil evidence unveils an Early Cambrian origin for Bryozoa [J].Nature,2021,599(7884):251-255.
[152] LI L Y,SKOVSTED C B,DAI T,et al.Qingjianglepas from the Qingjiang Biota,an evolutionary dead-end of Cambrian helcionelloid mollusks?[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2021,575:110480.
[153] HAN J,MORRIS S C,CUTHILL J F H,et al.Sclerite-bearing annelids from the lower Cambrian of South China [J].Scientific Reports,2019,9:4955.
[154] CHEN H,PARRY L A,VINTHER J,et al.A Cambrian crown annelid reconciles phylogenomics and the fossil record [J].Nature,2020,583(7815):249-252.
[155] ZHANG Z F,HOLMER L E,SKOVSTED C B,et al.A sclerite-bearing stem group entoproct from the Early Cambrian and its implications [J].Scientific Reports,2013,3:1066.
[156] HUANG D Y,CHEN J Y,VANNIER J,et al.Early Cambrian sipunculan worms from Southwest China [J].Proceedings of the Royal Society B:Biological Sciences,2004,271(1549):1671-1676.
[157] GOLDBERG W M.The biology of reefs and reef organisms [M].Chicago:University of Chicago Press,2013.
[158] GIRIBET G.Morphology should not be forgotten in the era of genomics:A phylogenetic perspective [J].Zoologischer Anzeiger-A Journal of Comparative Zoology,2015,256:96-103.
[159] QIAN Y.Stratigraphy and palaeontology of systemic boundaries in China,Precambrian-Cambrian boundary (2),Early Cambrian small shelly fossils of China with special reference to the Precambrian-Cambrian boundary[M].Nanjing:Nanjing University Publishing House,1989.
[160] LI G X,STEINER M,ZHU X J,et al.Early Cambrian metazoan fossil record of South China:Generic diversity and radiation patterns [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):229-249.
[161] KOUCHINSKY A,BENGTSON S,RUNNEGAR B,et al.Chronology of Early Cambrian biomineralization [J].Geological Magazine,2012,149(2):221-251.
[162] MALOOF A C,PORTER S M,MOORE J L,et al.The earliest Cambrian record of animals and ocean geochemical change [J].Geological Society of America Bulletin,2010,122(11/12):1731-1774.
[163] 张志飞,陈飞扬.寒武纪大爆发——早期后生动物辐射之谜:序言[J].古生物学报,2017,56(4):409-414.ZHANG Z F,CHEN F Y.Introduction:The Cambrian radiation of metazoans:New advances and fossil discoveries from China [J].Acta Palaeontologica Sinica,2017,56(4):409-414.
[164] ZHANG Z F,HOLMER L E.Exceptionally preserved brachiopods from the Chengjiang Lagerst?tte (Yunnan,China):Perspectives on the Cambrian explosion of metazoans [J].National Science in China,2013,21(2):66-80.
[165] GUO J F,LI G X,QIANG Y Q,et al.Watsonella crosbyi from the Lower Cambrian (Terreneuvian,Stage 2) Yanjiahe Formation in Three Gorges Area,South China [J].Palaeoworld,2021,30(1):1-19.
[166] ZHENG Y J,TANG Q,LIU P,et al.Characterization of the multicellular membrane-bearing algae from the Kuanchuanpu Biota (Cambrian:Terreneuvian) [J].Journal of Geophysical Research:Biogeosciences,2021,126(6):e2020JG006102.
[167] ZHANG Z F,SMITH M R,SHU D G.New reconstruction of the Wiwaxia scleritome,with data from Chengjiang juveniles [J].Scientific Reports,2015,5(1):1-9.
[168] HOU X G,SIVETER D J,SIVETER D J,et al.The Cambrian fossils of Chengjiang,China:The flowering of early animal life[M].2nd ed.New York:Wiley-Blackwell,2017.
[169] LIU Y H,QIN J C,WANG Q,et al.New armoured scalidophorans (Ecdysozoa,Cycloneuralia) from the Cambrian Fortunian Zhangjiagou Lagerst?tte,South China [J].Papers in Palaeontology,2019,5(2):241-260.
[170] HAN J,MORRIS S C,OU Q,et al.Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China) [J].Nature,2017,542(7640):228-231.
[171] 舒德干,韩健.澄江动物群的核心价值:动物界成型和人类基础器官诞生[J].地学前缘,2020,27(6):1-27,382-412.SHU D G,HAN J.Core value of the Chengjiang fauna:Formation of the animal kingdom and the birth of basic human organs [J].Earth Science Frontiers,2020,27(6):1-27,382-412.
[172] ZHANG Z L,POUR M G,POPOV L E,et al.The oldest Cambrian trilobite:Brachiopod association in South China [J].Gondwana Research,2021,89:147-167.
[173] ZHANG Z F,ZHANG Z L,LI G X,et al.The Cambrian brachiopod fauna from the first-trilobite age Shuijingtuo Formation in the Three Gorges area of China [J].Palaeoworld,2016,25(3):333-355.
[174] 张兴亮,舒德干.寒武纪大爆发的因果关系[J].中国科学(地球科学),2014,44(6):1155-1170.ZHANG X L,SHU D G.Causes and consequences of the Cambrian Explosion [J].Science China Earth Sciences,2014,57(5):930-942.
[175] ZHANG X L.Fossil treasure house for exploring the Cambrian Explosion [J].National Science Review,2014,1(4):488-489.
[176] ZHURAVLEV A Y,WOOD R A.The two phases of the Cambrian Explosion [J].Scientific Reports,2018,8(1):16656.
[177] TAYLOR P D,WAESCHENBACH A.Phylogeny and diversification of bryozoans [J].Palaeontology,2015,58(4):585-599.
[178] ERNST A,WILSON M A.Bryozoan fossils found at last in deposits from the Cambrian period [J].Nature,2021,599(7884):203-204.
[179] SHU D G,ZHANG X L,HAN J,et al.Restudy of Cambrian Explosion and formation of animal tree [J].Acta Palaeontologica Sinica,2008,48(3):414-427.
[180] SHU D G.Cambrian explosion:Birth of tree of animals [J].Gondwana Research,2008,14(1/2):219-240.
[181] KLUG C,KR?GER B,KIESSLING W,et al.The Devonian nekton revolution [J].Lethaia,2010,43(4):465-477.
[182] ERWIN D H,VALENTINE J W.The Cambrian Explosion:The construction of animal biodiversity [M].Colorado Falconer DS:Roberts and Company Publishers,2013.
[183] ZHURAVLEV A Y,WOOD R.Dynamic and synchronous changes in metazoan body size during the Cambrian Explosion [J].Scientific Reports,2020,10(1):1-8.
[184] XIAO S H,NARBONNE G M,ZHOU C M,et al.Towards an Ediacaran time scale:Problems,protocols,and prospects [J].Episodes,2016,39(4):540-555.
[185] NARBONNE G M,XIAO S,SHIELDS G A,et al.The Ediacaran period [M]//The geologic time scale.Amsterdam:Elsevier,2012:413-435.
[186] PANG K,WU C,SUN Y,et al.New Ediacara-type fossils and late Ediacaran stratigraphy from the northern Qaidam Basin (China):Paleogeographic implications [J].Geology,2021,49(10):1160-1164.
[187] SHEN B,DONG L,XIAO S,et al.The Avalon Explosion:Evolution of Ediacara morphospace [J].Science,2008,319(5859):81-84.
[188] CAI Y P,XIAO S H,LI G X,et al.Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian Explosion [J].Geology,2019,47(4):380-384.
[189] ZHU M,ZHURAVLEV A Y,WOOD R A,et al.A deep root for the Cambrian Explosion:Implications of new bio-and chemostratigraphy from the Siberian Platform [J].Geology,2017,45(5):459-462.
[190] WOOD R,ZHURAVLEV A Y.Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons [J].Earth-Science Reviews,2012,115(4):249-261.
[191] WOOD R,BOWYER F,PENNY A,et al.Did anoxia terminate Ediacaran benthic communities?Evidence from early diagenesis [J].Precambrian Research,2018,313:134-147.
[192] WANG X,ZHANG X L,ZHANG Y,et al.New materials reveal Shaanxilithes as a Cloudina-like organism of the late Ediacaran [J].Precambrian Research,2021,362:106277.
[193] CHAI S,WU Y,HUA H.Potential index fossils for the Terminal Stage of the Ediacaran System [J].Journal of Asian Earth Sciences,2021,218:104885.
[194] WILLMAN S,SLATER B J.Late Ediacaran organic microfossils from Finland [J].Geological Magazine,2021,158(12):2231-2244.
[195] WOOD R,IVANTSOV A Y,ZHURAVLEV A Y.First macrobiota biomineralization was environmentally triggered [J].Proceedings of the Royal Society B:Biological Sciences,2017,284(1851):20170059.
[196] WOOD R,DONOGHUE P C J,LENTON T M,et al.The origin and rise of complex life:Progress requires interdisciplinary integration and hypothesis testing [J].Interface Focus,2020,10(4):20200024.
[197] CAI Y P,HUA H,SCHIFFBAUER J D,et al.Tube growth patterns and microbial mat-related lifestyles in the Ediacaran fossil Cloudina,Gaojiashan Lagerst?tte,South China [J].Gondwana Research,2014,25(3):1008-1018.
[198] JONES CG,JH LAWTON J H,Shachak M.Ecosystem engineering by organisms:Why semantics matters [J].Trends in Ecology and Evolution,1997,12:275.
[199] BUDD G E,JENSEN S.The origin of the animals and a ′Savannah′ hypothesis for early bilaterian evolution [J].Biological Reviews,2017,92(1):446-473.
[200] WOOD R,ERWIN D H.Innovation not recovery:Dynamic redox promotes metazoan radiations [J].Biological Reviews,2018,93(2):863-873.
[201] ERWIN D H.A conceptual framework of evolutionary novelty and innovation [J].Biological Reviews,2021,96(1):1-15.
[202] ERWIN D H,TWEEDT S.Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa [J].Evolutionary Ecology,2012,26(2):417-433.
[203] BUATOIS L A,MáNGANO M G,OLEA R A,et al.Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event [J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(25):6945-6948.
[204] WOOD R,LIU A G,BOWYER F,et al.Integrated records of environmental change and evolution challenge the Cambrian Explosion [J].Nature Ecology & Evolution,2019,3(4):528-538.
[205] MURDOCK D J E.The ′biomineralization toolkit′ and the origin of animal skeletons [J].Biological Reviews,2020,95(5):1372-1392.
[206] DROSER M L,BOTTJER D J,SHEEHAN P M.Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life [J].Geology,1997,25(2):167-170.
[207] HARPER D A T.The Ordovician biodiversification:Setting an agenda for marine life [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2006,232(2/4):148-166.
[208] CONG P,MA X,WILLIAMS M,et al.Host-specific infestation in early Cambrian worms [J].Nature Ecology & Evolution,2017,1(10):1465-1469.
[209] LI Y,WILLIAMS M,HARVEY T H P,et al.Symbiotic fouling of Vetulicola,an early Cambrian nektonic animal [J].Communications Biology,2020,3(1):517.
[210] TOPPER T P,STROTZ L C,HOLMER L E,et al.Competition and mimicry:The curious case of chaetae in brachiopods from the middle Cambrian Burgess Shale [J].BMC Evolutionary Biology,2015,15(1):1-16.
[211] TOPPER T P,HOLMER L E,CARON J B.Brachiopods hitching a ride:An early case of commensalism in the middle Cambrian Burgess Shale [J].Scientific Reports,2014,4:6704.
[212] HARPER D A T.The Ordovician brachiopod radiation:Roles of alpha,beta,and gamma diversity [J].The Ordovician Earth System,2010,466:69-83.
[213] 詹仁斌,靳吉锁,刘建波.奥陶纪生物大辐射研究:回顾与展望[J].科学通报,2013,58(33):3357-3371.ZHAN R B,JIN J S,LIU J B.Investigation on the great Ordovician biodiversification event (GOBE):Review and prospect[J].Chinese Science Bulletin,2013,58(33):3357-3371.
[214] JONES C G,LAWTON J H,SHACHAK M.Organisms as ecosystem engineers [J].Oikos,1994,69(3):373-386
[215] GUTIéRREZ J L,JONES C G,STRAYER D L,et al.Mollusks as ecosystem engineers:The role of shell production in aquatic habitats [J].Oikos,2003,101(1):79-90.
[216] WRIGHT J P,JONES C G.The concept of organisms as ecosystem engineers ten years on:Progress,limitations,and challenges [J].Bioscience,2006,56(3):203-209.
[217] ERWIN D H.Macroevolution of ecosystem engineering,niche construction and diversity [J].Trends in Ecology & Evolution,2008,23(6):304-310.
[218] ERWIN D H,LAFLAMME M,TWEEDT S M,et al.The Cambrian conundrum:Early divergence and later ecological success in the early history of animals [J].Science,2011,334(6059):1091-1097.
[219] CARRERA M G,BOTTING J P.Evolutionary history of Cambrian spiculate sponges:Implications for the Cambrian evolutionary fauna [J].Palaios,2008,23(3):124-138.
[220] DROSER M L,JENSEN S,GEHLING J G.Trace fossils and substrates of the terminal Proterozoic-Cambrian transition:Implications for the record of early bilaterians and sediment mixing [J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(20):12572-12576.
[221] MCGHEE G R,SHEEHAN P M,BOTTJER D J,et al.Ecological ranking of Phanerozoic biodiversity crises:Ecological and taxonomic severities are decoupled [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,211(3/4):289-297.
[222] ZHAO F C,ZHU M Y,HU S X.Community structure and composition of the Cambrian Chengjiang biota [J].Science China Earth Sciences,2010,53(12):1784-1799.
[223] ZHAO F C,CARON J B,BOTTJER D J,et al.Diversity and species abundance patterns of the early Cambrian (Series 2,Stage 3) Chengjiang Biota from China [J].Paleobiology,2014,40(1):50-69.
[224] ZHAO F C,HU S X,CARON J B,et al.Spatial variation in the diversity and composition of the Lower Cambrian (Series 2,Stage 3) Chengjiang biota,Southwest China [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2012,346/347:54-65.
[225] CHEN F Y,BROCK G A,ZHANG Z L,et al.Brachiopod-dominated communities and depositional environment of the Guanshan Konservat-Lagerst?tte,eastern Yunnan,China [J].Journal of the Geological Society,2021,178(1):jgs2020-043.
[226] HARPER D A T,STOUGE S,CHRISTIANSEN J L,et al.Early Cambrian brachiopod-dominated shell concentrations from North-East Greenland:Environmental and taphonomic implications [J].Global and Planetary Change,2021,204:103560.
[227] THAYER C W.Morphologic adaptations of benthic invertebrates to soft substrata [J].Journal of Marine Research,1975,33(2):177-189.
[228] LEI Q P,HAN J,OU Q,et al.Sedentary habits of anthozoa-like animals in the Chengjiang Lagerst?tte:Adaptive strategies for Phanerozoic-style soft substrates [J].Gondwana Research,2014,25(3):966-974.
[229] TOPPER T P,ZHANG Z F,GUTIéRREZ-MARCO J C,et al.The dawn of a dynasty:Life strategies of Cambrian and Ordovician brachiopods [J].Lethaia,2018,51(2):254-266.
[230] WANG D,VANNIER J,ARIA C,et al.Tube-dwelling in early animals exemplified by Cambrian scalidophoran worms [J].BMC Biology,2021,19(1):1-20.
[231] HU Y Z,KNAUST D,LIANG Y,et al.Burrows filled with faecal pellets from the Cambrian (Stage 4) Guanshan biota of South China and their palaeoecological implications [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2021,567:110249.
[232] SCHIFFBAUER J D,SELLY T,JACQUET S M,et al.Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period [J].Nature Communications,2020,11(1):205.
[233] SCHIFFBAUER J D.The age of tubes:A window into biological transition at the Precambrian-Cambrian boundary [J].Geology,2016,44(11):975-976.
[234] TANG Q,PANG K,LI G J,et al.One-billion-year-old epibionts highlight symbiotic ecological interactions in early eukaryote evolution [J].Gondwana Research,2021,97:22-33.
[235] DORNBOS S Q,CHEN J Y.Community palaeoecology of the early Cambrian Maotianshan Shale biota:Ecological dominance of priapulid worms [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2008,258(3):200-212.
[236] KLOSS T J,DORNBOS S Q,CHEN J Y,et al.High-resolution geochemical evidence for oxic bottom waters in three Cambrian Burgess Shale-type deposits [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2015,440:90-95.
[237] YANG X Y,SMITH M R,YANG J,et al.A ′hermit′ shell-dwelling lifestyle in a Cambrian priapulan worm [J].Current Biology,2021,31(21):R1420-R1421.
[238] HOU X G,SIVETER D J,ALDRIDGE R J,et al.A new arthropod in chain-like associations from the Chengjiang lagerst?tte (Lower Cambrian),Yunnan,China [J].Palaeontology,2009,52(4):951-961.
[239] OU Q,VANNIER J,YANG X,et al.Evolutionary trade-off in reproduction of Cambrian arthropods [J].Science Advances,2020,6(18):eaaz3376.
[240] DUAN Y H,HAN J,FU D J,et al.Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerst?tte,South China [J].Gondwana Research,2014,25(3):983-990.
[241] AUSICH W I,BOTTJER D J.Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic [J].Science,1982,216(4542):173-174.
[242] AUSICH W I,BOTTJER D J.Sessile Invertebrates [M]//Palaeobiology II,Malden,MA,USA:Blackwell Science Ltd.,2001:384-386.
[243] WANG H Z,ZHANG Z F,HOLMER L E,et al.Peduncular attached secondary tiering acrotretoid brachiopods from the Chengjiang fauna:Implications for the ecological expansion of brachiopods during the Cambrian Explosion [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2012,323-325:60-67.
[244] WANG H Z,LI C F,ZHANG Z F,et al.Fossil brachiopod identification using a new deep convolutional neural network [J/OL].Gondwana Research,2021.https://doi.org/10.1016/j.gr.2021.09.011.
[245] TOPPER T P,STROTZ L C,HOLMER L E,et al.Survival on a soft seafloor:Life strategies of brachiopods from the Cambrian Burgess Shale [J].Earth-Science Reviews,2015,151:266-287.
[246] TOPPER T P,STROTZ L C,SKOVSTED C B,et al.Do brachiopods show substrate-related phenotypic variation?A case study from the Burgess Shale [J].Palaeontology,2017,60(2):269-279.
[247] DUAN X L,LIANG Y,HOLMER L E,et al.First report of acrotretoid brachiopod shell beds in the lower Cambrian (Stage 4) Guanshan Biota of eastern Yunnan,South China [J].Journal of Paleontology,2021,95(1):40-55.
[248] DORNBOS S Q,BOTTJER D J,CHEN J Y.Evidence for seafloor microbial mats and associated metazoan lifestyles in Lower Cambrian phosphorites of Southwest China [J].Lethaia,2004,37(2):127-138.
[249] BUATOIS L A,BORRUEL-ABADíA V,DE LA HORRA R,et al.Impact of Permian mass extinctions on continental invertebrate infauna [J].Terra Nova,2021,33(5):455-464.
[250] DEBRENNE F,KRUSE P D,ZHANG S G.An Asian compound archaeocyath [J].Alcheringa:An Australasian Journal of Palaeontology,1991,15(4):285-291.
[251] WOOD R.The ecological evolution of reefs [J].Annual Review of Ecology and Systematics,1998,29(1):179-206.
[252] CHEN F Y,ZHANG Z F,BETTS M J,et al.First report on Guanshan Biota (Cambrian Stage 4) at the stratotype area of Wulongqing Formation in Malong County,Eastern Yunnan,China [J].Geoscience Frontiers,2019,10(4):1459-1476.
[253] DUAN X L,BETTS M J,HOLMER L E,et al.Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the Three Gorges area of South China [J].Journal of Paleontology,2021,95(3):497-526.
[254] Secretariat of Palaeontological Society of China.2020年度中国古生物学十大进展评选结果及成果简介[J].古生物学报,2021,60(2):327-346.
[255] ZHANG Z F,HOLMER L E,BROCK G A,et al.Paleoecological complexities during Cambrian Explosion:Evidence from brachiopods [J].Permophiles,2018,66(Suppl.1):131-132.
[256] HUA H,PRATT B R,ZHANG L Y.Borings in Cloudina shells:Complex Predator-Prey Dynamics in the Terminal Neoproterozoic [J].Palaios,2003,18(4/5):454-459.
[257] BENGTSON S.Origins and early evolution of predation [J].The Paleontological Society Papers,2002,8:289-318.
[258] VANNIER J.Gut contents as direct indicators for trophic relationships in the Cambrian marine ecosystem [J].PloS One,2012,7(12):e52200.
[259] ZHU M Y,VANNIER J,VAN ITEN H,et al.Direct evidence for predation on trilobites in the Cambrian [J].Proceedings of the Royal Society B:Biological Sciences,2004,271(suppl 5):S277-S280.
[260] OU Q,SHU D G,HAN J,et al.A juvenile redlichiid trilobite caught on the move:Evidence from the Cambrian (Series 2) ChengJiang Lagerstatte,Southwestern China [J].Palaios,2009,24(7):473-477.
[261] 程美蓉,韩健,欧强,等.寒武纪早期澄江生物群中受创伤的中间型始莱德利基三叶虫(Eoredlichia intermedia) [J].古生物学报,2019,58(4):425-435.CHENG M R,HAN J,OU Q,et al.Injured trilobite Eoredlichia intermedia from the Early Cambrian Chengjiang biota[J].Acta Palaeontologica Sinica,2019,58(4):425-435.
[262] KOWALEWSKI M,HOFFMEISTER A P,BAUMILLER T K,et al.Secondary evolutionary escalation between brachiopods and enemies of other prey [J].Science,2005,308(5729):1774-1777.
[263] HUANG B,LI R Y.The repaired durophagous scar in the shell of a lingulid brachiopod immediately after the end Ordovician mass extinction [J].Alcheringa:An Australasian Journal of Palaeontology,2020,44(2):265-272.
[264] FORCINO F L,STAFFORD E S,TETREAULT R L.Brachiopod morphology,life mode,and crushing predation in the Ordovician Arnheim Formation,Kentucky,USA [J].Historical Biology,2019,31(7):914-925.
[265] MáNGANO M G,BUATOIS L A.Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition:Evolutionary and geobiological feedbacks [J].Proceedings of the Royal Society B:Biological Sciences,2014,281(1780):20140038.
[266] MáNGANO M G,BUATOIS L A.The Cambrian explosion [M]//The trace-fossil record of major evolutionary events.Dordrecht:Springer,2016:73-126.
[267] BUATOIS L A,MáNGANO M G.The trace-fossil record of major evolutionary events [M]//Ediacaran ecosystems and the dawn of animals.Dordrecht:Springer,2016:27-72.
[268] MáNGANO M G,BUATOIS L A.The rise and early evolution of animals:Where do we stand from a trace-fossil perspective?[J].Interface Focus,2020,10(4):20190103.
[269] ZHANG X L,AHLBERG P,BABCOCK L E,et al.Challenges in defining the base of Cambrian Series 2 and Stage 3 [J].Earth-Science Reviews,2017,172:124-139.
[270] HAN J,SHU D G,ZHANG Z F,et al.Preliminary notes on soft-bodied fossil concentrations from the Early Cambrian Chengjiang deposits [J].Chinese Science Bulletin,2006,51(20):2482-2492.
[271] ZHANG X G,PRATT B R.Microborings in Early Cambrian phosphatic and phosphatized fossils [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2008,267(3/4):185-195.
[272] DING Y,LIU J N,CHEN F F.Ichnology,palaeoenvironment,and ecosystem dynamics of the early Cambrian (stage 4,series 2) Guanshan Biota,South China [J].Geological Journal,2020,55(1):77-94.
[273] SEPKOSKI J J.A factor analytic description of the Phanerozoic marine fossil record [J].Paleobiology,1981,7(1):36-53.
[274] WEBBY B D,PARIS F,DROSER M L,et al.The great Ordovician biodiversification event [M].New York:Columbia University Press,2004.
[275] 詹仁斌,张元动,袁文伟.地球生命过程中的一个新概念:奥陶纪生物大辐射[J].自然科学进展,2007,17(8):1006-1014.
[276] 张元动,詹仁斌,甄勇毅,等.中国奥陶纪综合地层和时间框架[J].中国科学(地球科学),2019,49:66-92.ZHANG Y D,ZHAN R B,ZHEN Y Y,et al.Ordovician integrative stratigraphy and timescale of China[J].Science China Earth Sciences,2019,62:61-88.
[277] OWEN A W,CRAME J A.Palaeobiogeography and the Ordovician and Mesozoic-Cenozoic biotic radiations [J].Geological Society,London,Special Publications,2002,194(1):1-11.
[278] SERVAIS T,OWEN A W,HARPER D A T,et al.The great Ordovician biodiversification event (GOBE):The palaeoecological dimension [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,294(3/4):99-119.
[279] SERVAIS T,HARPER D A T.The great Ordovician biodiversification event (GOBE):Definition,concept and duration [J].Lethaia,2018,51(2):151-164.
[280] LEFEBVRE B,LEROSEY-AUBRIL R,SERVAIS T,et al.The Fezouata Biota:An exceptional window on the Cambro-Ordovician faunal transition [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,460:1-6.
[281] PARK J,HONG J,LEE J H,et al.Early labechiid stromatoporoids of the Yeongheung Formation (Middle Ordovician),Yeongwol Group,mideastern Korean Peninsula:Part I.Environmental distribution [J].Geosciences Journal,2017,21(3):317-329.
[282] JEON J,LIANG K,LEE M,et al.Earliest known spatial competition between stromatoporoids:Evidence from the Upper Ordovician Xiazhen Formation of South China [J].Journal of Paleontology,2020,94(1):1-10.
[283] RONG J Y,AUNG K P,ZHAN R B,et al.The latest Ordovician Hirnantia brachiopod fauna of Myanmar:Significance of new data from the Mandalay Region [J].Palaeoworld,2020,29(1):1-30.
[284] RENBIN Z,COCKS L R M.Late Ordovician brachiopods from the South China Plate and their palaeogeographical significance [J].Special Papers in Palaeontology,1998,59:1-70.
[285] ZHAN R,JIN J.Brachiopods from the Middle Ordovician Shihtzupu Formation of Yunnan Province,China [J].Acta Palaeontologica Polonica,2005,50(2):365-393.
[286] ZHAN R B,JIN J S.Brachiopods from the Dashaba Formation (Middle Ordovician) of Sichuan Province,south-west China [J].Brachiopods From the Dashaba Formation(Middle Ordovician) of Sichuan Province,South-west China,2005,74:5-63.
[287] TAYLOR P D,WAESCHENBACH A.Phylogeny and diversification of bryozoans [J].Palaeontology,2015,58(4):585-599.
[288] MA J Y,TAYLOR P D,XIA F,et al.The oldest known bryozoan:Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang,South-western Hubei,central China [J].Palaeontology,2015,58(5):925-934.
[289] LI L,FENG H,JANUSSEN D,et al.Unusual Deep Water sponge assemblage in South China:Witness of the end-Ordovician mass extinction [J].Scientific Reports,2015,5(1):16060.
[290] BOTTING J P,MUIR L A,ZHANG Y D,et al.Flourishing sponge-based ecosystems after the end-Ordovician mass extinction [J].Current Biology,2017,27(4):556-562.
[291] ZHU M,YU X,AHLBERG P E,et al.A Silurian placoderm with osteichthyan-like marginal jaw bones [J].Nature,2013,502(7470):188-193.
[292] DAI X,KORN D,SONG H J.Morphological selectivity of the Permian-Triassic ammonoid mass extinction [J].Geology,2021,49(9):1112-1116.
[293] SONG H J,KEMP D B,TIAN L,et al.Thresholds of temperature change for mass extinctions [J].Nature Communications,2021,12:4694.
[294] STEEMANS P,HéRISSé A L,MELVIN J,et al.Origin and radiation of the earliest vascular land plants [J].Science,2009,324(5925):353.
[295] WEI N,KACZOROWSKI R L,ARCEO-GóMEZ G,et al.Pollinators contribute to the maintenance of flowering plant diversity [J].Nature,2021,597(7878):688-692.
[296] FREMIER A K,YANITES B J,YAGER E M.Sex that moves mountains:The influence of spawning fish on river profiles over geologic timescales [J].Geomorphology,2018,305:163-172.
[297] CROTTY S M,ORTALS C,PETTENGILL T M,et al.Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes [J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(30):17891-17902.
[298] BRENCHLEY P J,HARPER D A T.Palaeoecology Ecosystems,environments and evolution [M].London:Stanley Thornes,Ltd.,1998:1-402.
基本信息:
DOI:10.16152/j.cnki.xdxbzr.2021-06-012
中图分类号:Q911.1
引用信息:
[1]张志飞,刘璠,梁悦等.寒武纪生命大爆发与地球生态系统起源演化[J].西北大学学报(自然科学版),2021,51(06):1065-1106.DOI:10.16152/j.cnki.xdxbzr.2021-06-012.
基金信息:
国家自然科学基金重大项目(41890844);国家自然科学基金国际(地区)合作与交流项目(41720104002);国家自然科学基金创新群体(41621003); 国家杰出青年科学基金(41425008); 高等学校学科创新引智计划(D17013)