nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 01, v.53 77-86
基于AMPKα/SREBP-1/ACCα信号通路调节糖脂代谢的山楂果叶配伍机制
基金项目(Foundation): 国家自然科学基金(81202503); 陕西省重点研发计划项目(2017ZDXM-SF-017); 陕西省教育厅重点实验室项目(17JS128);陕西省教育厅服务地方专项(17JF028); 陕西省重点科技创新团队(2016KCT-24)
邮箱(Email): zhaoye@nwu.edu.cn;
DOI: 10.16152/j.cnki.xdxbzr.2023-01-009
摘要:

糖脂代谢病是由遗传、环境和精神状况引起的一种复杂性疾病,其特点是糖、脂代谢紊乱,中医学称之为“消渴症”,随着生活水平和社会压力的提高该疾病呈现多龄化趋势。中药的多组分协同增效使其在长期治疗消渴症方面具有明显优势。山楂果、叶富含有机酸和黄酮类成分,在降糖降脂方面具有显著效果。测定了山楂果、叶提取物中主要成分的含量,建立了T2DM大鼠模型,研究了山楂果叶提取物干预AMPKα/SREBP-1/ACCα信号通路进而调节糖脂代谢的作用和机制,结合网络药理学方法分析山楂果、叶治疗T2DM的有效成分、作用靶点和作用机制。结果表明,山楂果、叶配伍给药能更显著降低T2DM大鼠空腹血糖血脂水平,提高糖耐量水平,促进胰岛素分泌,降低脂肪堆积,缩小脂肪细胞,同时调节肝肾功能,增加肝脏AMPKα及其磷酸化水平,降低SREBP-1、ACCα的蛋白表达。网络药理学共筛选到14个山楂果、叶的有效成分,与疾病交集靶点共150个,参与调控PI3K-Akt信号通路、MAPK信号通路、胰岛素抵抗等与糖脂代谢相关的多个信号通路。研究表明,山楂的果、叶配伍能够通过干预AMPKα/SREBP-1/ACCα通路,协同调节糖脂代谢,并且对于PI3k-Akt信号通路、MAPK信号通路、胰岛素抵抗等也有调节作用,具有良好的临床应用前景。

Abstract:

Glucolipid metabolic disease is a complex disease characterized by disorder of glucose and lipid metabolism and caused by genetic, environmental and mental conditions. It is called "Xiaoke disease" in traditional Chinese medicine. With the improvement of living standards and social pressure, it shows a multi-aging trend. The multi-component synergy of traditional Chinese medicine has obvious advantages in the long-term treatment of diabetes. Hawthorn fruit and leaves are rich in organic acids and flavonoids, which have significant effect on lowering blood sugar and blood lipids. In this study, the contents of the main components in hawthorn fruit and leaf extracts were determined, and the T2DM rat model was established to study the effect and mechanism of hawthorn fruit and leaf extracts on AMPKα/SREBP-1/ACCα signaling pathway and regulation of glucose and lipid metabolism. Combined with the method of network pharmacology, the effective components, action targets and action mechanism of hawthorn fruit and leaf in the treatment of T2DM were analyzed. The results showed that the combined administration of hawthorn fruit and leaf could significantly reduce the fasting blood glucose and lipid level, improve the glucose tolerance level, promote insulin secretion, reduce fat accumulation, shrink adipocytes, regulate liver and kidney function and increase AMPKα phosphorylation, reduce protein expression of SREBP-1 and ACCα. A total of 14 active components of hawthorn fruit leaves were screened by network pharmacology, with a total of 150 disease intersection targets, which are involved in the regulation of PI3K/Akt signaling pathway, MAPK signaling pathway, insulin resistance and other signaling pathways related to glucose and lipid metabolism. This study shows that the compatibility of fruit and leaf of hawthorn can regulate glucose and lipid metabolism through AMPKα-SREBP-1-ACCα pathway, which has a good prospect of clinical application.

参考文献

[1] GUO J.Research progress on prevention and treatment of glucolipid metabolic disease with integrated traditional Chinese and Western medicine[J].Chinese Journal of Integrative Medicine,2017,23(6):403-409.

[2] KWOK A,ZVETKOVA I,VIRIUE S,et al.Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure[J].Molecular Metabolism,2020,10(40):101020.

[3] 宓伟,王淇,李小真,等.山楂原花青素及维生素C联合应用对胰岛素抵抗大鼠肾脏保护作用[J].中草药,2017,48(21):4479-4484.MI W,WANG Q,LI X Z,et al.Effects of hawthorn proanthocyanidins and vitamin C on kidney protection in insulin-resistance rats[J].Chinese Traditional and Herbal Drugs,2017,48(21):4479-4484.

[4] 国家药典委员会.中华人民共和国药典(2020年版一部)[M].北京:中国医药科技出版社,2020:33-34.

[5] GUO Q,YE P Z,QI X H,et al.Cardiovascular pharmacology research progress of hawthorn leaves extract[J].Key Engineering Materials,2015,636:167-169.

[6] 李澎,王建农,侯金才,等.山楂叶原花青素对血管内皮细胞钙活化作用的研究[J].中国中药杂志,2018,43(12):2600-2606.LI P,WANG J N,HOU J C,et al.Calcium mobilizing effect of hawthorn leaf procyanidins in vascular endothelial cells[J].China Journal of Chinese Materia Medica,2018,43(12):2600-2606.

[7] 周少英,苏静,阚敏宸,等.山楂叶总黄酮对2型糖尿病大鼠血糖血脂和抗氧化能力的影响[J].江苏中医药,2016,48(5):79-82.ZHOU S Y,SU J,KAN M C,et al.Effects of total flavonoids from hawthorn leaves on blood glucose and lipid and antioxidant capacity of type 2 diabetic rats[J].Jiangsu Journal of Traditional Chinese Medicine,2016,48(5):79-82.

[8] 张鹏,张培新.山楂叶总黄酮对2型糖尿病大鼠胰腺组织保护作用的研究[J].中药药理与临床,2015,31(5):72-75.ZHANG P,ZHANG P X.Protective effects of hawthorn leaves flavonoids on pancreatic tissue in diabetic rats[J].Pharmacology and Clinics of Chinese Materia,2015,31(5):72-75.

[9] 杨文娟.山楂叶总黄酮对游离脂肪酸损伤胰岛细胞保护作用的初步研究[D].西安:第四军医大学,2012.

[10] RU J L,LI P,WANG J N,et al.TCMSP:A database of systems pharmacology for drug discovery from herbal medicines[J].Journal of Cheminformatics,2014,6(1):1-6.

[11] SHANNON P,MARKIEL A,OZIER O,et al.Cytoscape:A software environment for integrated models of biomolecular interaction networks[J].Genome Research,2003,13(11):2498-2504.

[12] KANEHISA M,FURUMICHI M,TANABE M,et al.KEGG:New perspectives on genomes,pathways,diseases and drugs[J].Nucleic Acids Research,2017,45(1):353-361.

[13] AIERKEN A,BUCHHOLZ T,CHEN C,et al.Hypoglycemic effect of hawthorn in type II diabetes mellitus rat model[J].Journal of the Science of Food and Agriculture,2017,97(13):4557-4561.

[14] 李露.山楂有机酸组分抗缺血再灌注心肌细胞凋亡的机制研究[D].南昌:江西中医药大学,2019.

[15] DONG P Z,PAN L L,ZHANG X T,et al.Hawthorn (Crataegus pinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice[J].Journal of Ethnopharmacology,2017,198:479-488.

[16] RUDERMAN N B,CARLING D,PRENTKI M,et al.AMPK,insulin resistance,and the metabolic syndrome[J].Journal of Clinical Investigation,2013,123(7):2764-2772.

[17] YOU M,MATSUMOTO M,PACOLD C M,et al.The role of AMP-activated protein kinase in the action of ethanol in the liver[J].Gastroenterology,2004,127(6):1798-1808.

[18] MOSLEHI A,HAMIDI-ZAD Z.Role of SREBPs in liver diseases:A mini-review[J].Journal of Clinical and Translational Hepatology,2018,6(3):332-338.

[19] BENNETT M K,LOPEZ J M,SANCHEZ H B,et al.Sterol regulation of fatty acid synthase promoter.Coordinate feedback regulation of two major lipid pathways[J].Journal of Biological Chemistry,1995,270(43):25578-25583.

[20] BRIGGS M R,YOKOYAMA C,WANG X D,et al.Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter[J].Journal of Biological Chemistry,1993,268(19):14490-14496.

[21] LOPEZ J M,BENNETT M K,SANCHEZ H B,et al.Sterol regulation of acetyl coenzyme a carboxylase:A mechanism for coordinate control of cellular lipid[J].Proc Natl Acad Sci U S A,1996,93(3):1049-1053.

[22] FORETZ M,GUICHARD C,FERRE P,et al.Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes[J].Proc Natl Acad Sci U S A,1999,96(22):12737-12742.

[23] CHAKRAVARTY K,LEAHY P,BECARD D,et al.Sterol regulatory element-binding protein-1c mimics the negative effect of insulin on phosphoenolpyruvate carboxykinase (GTP) gene transcription[J].Journal of Biological Chemistry,2001,276(37):34816-34823.

[24] UNGER R H,ZHOU Y T.Lipotoxicity of β-cells in obesity and in other causes of fatty acid spillover[J].Diabetes,2001,50(S1):118-121.

[25] ABU-ELHEIGA L,JAYAKUMAR A,BALDINI A,et al.Human acetyl-CoA carboxylase:Characterization,molecular cloning,and evidence for two isoforms[J].Proc Natl Acad Sci U S A,1995,92(9):4011-4015.

[26] BARBER M C,PRICE N T,TRAVERS M T.Structure and regulation of acetyl-CoA carboxylase genes of metazoa[J].Biochimica et Biophysica Acta,2005,1733(1):1-28.

基本信息:

DOI:10.16152/j.cnki.xdxbzr.2023-01-009

中图分类号:R285.5

引用信息:

[1]周坤,王静静,李璐遥等.基于AMPKα/SREBP-1/ACCα信号通路调节糖脂代谢的山楂果叶配伍机制[J].西北大学学报(自然科学版),2023,53(01):77-86.DOI:10.16152/j.cnki.xdxbzr.2023-01-009.

基金信息:

国家自然科学基金(81202503); 陕西省重点研发计划项目(2017ZDXM-SF-017); 陕西省教育厅重点实验室项目(17JS128);陕西省教育厅服务地方专项(17JF028); 陕西省重点科技创新团队(2016KCT-24)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文