西北大学生命科学学院/西部资源生物与现代生物技术教育部重点实验室;
胡桃属约有22个物种,为第三纪孑遗植物,全球范围均有分布。该属植物种质资源丰富,具有重要的食用、材用、生态、经济、药用价值。其中,胡桃栽培历史悠久。综述胡桃属植物演化历史和基因组学方面的研究进展,从胡桃属植物物种形成、系统发育、生物地理和基因组学几个方面进行了阐述。对该属植物遗传多样性和驯化历史方面的研究前景进行展望。随着测序和分子生物技术的迅速发展,基因组学、转录组学、代谢组学、重测序、DNA甲基化、细胞器基因组、全基因组基因关联分析和其他组学技术将成为胡桃属植物演化历史、组学和育种的有利工具。
450 | 0 | 4 |
下载次数 | 被引频次 | 阅读次数 |
[2] ZHAO P,ZHOU H J,POTTER D,et al.Population genetics,phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes,transcriptomes,and genotyping-by-sequencing (GBS) [J].Molecular Phylogenetics and Evolution,2018,126:250-265.
[3] FENG X J,ZHOU H J,ZULFIQAR S,et al.The phytogeographic history of common walnut in China[J].Frontiers in Plant Science,2018,9:1399.
[4] MANNING W E.The classification within the Juglandaceae[J].Annals of the Missouri Botanical Garden,1978,65(4):1058-1087.
[5] MANOS P S,STONE D E.Evolution,phylogeny,and systematics of the Juglandaceae[J].Annals of the Missouri Botanical Garden,2001,88(2):231-269.
[6] RORABAUGH J M.English and black walnut phenolic antioxidant activity in vitro and following human nut consumption [J].Food and Nutrition Sciences,2011,2(3):193-200.
[7] ELOUAFY Y,EL IDRISSI Z L,EL YADINI A,et al.Variations in antioxidant capacity,oxidative stability,and physicochemical quality parameters of walnut (Juglans regia) oil with roasting and accelerated storage conditions[J].Molecules,2022,27(22):7693.
[8] GAO P,LIU R J,JIN Q Z,et al.Comparative study of chemical compositions and antioxidant capacities of oils obtained from two species of walnut:Juglans regia and Juglans sigillata[J].Food Chemistry,2019,279:279-287.
[9] ROS E,MATAIX J.Fatty acid composition of nuts:Implications for cardiovascular health[J].The British Journal of Nutrition,2006,96 (S2):S29-S35.
[10] TORABIAN S,HADDAD E,CORDERO-MACINTYRE Z,et al.Long-term walnut supplementation without dietary advice induces favorable serum lipid changes in free-living individuals[J].European Journal of Clinical Nutrition,2010,64(3):274-279.
[11] VINSON J A,CAI Y X.Nuts,especially walnuts,have both antioxidant quantity and efficacy and exhibit significant potential health benefits[J].Food & Function,2012,3(2):134-140.
[12] 奚声珂.我国胡桃属(Juglans L.)种质资源与核桃(Juglans.regia L.)育种 [J].林业科学,1987,23(3):342-350.XI S K.Gene resources of Juglans and genetic improvement of Juglans regia in China [J].Scientia Silvae Sinicae,1987,23(3):342-350.
[13] 郗荣庭.中国核桃(Juglans regia L.)起源考证[J].河北农业大学学报,1990,13(1):89-94.XI R T.Textural criticism of walnut (Juglans regia L.) origin in China[J].Journal of Hebei Agricultural University,1990,13(1):89-94.
[14] 路安民,张志耘.胡桃目的分化,进化和系统关系[J].植物分类学报,1990,28(2):96-102.LU A M,ZHANG Z Y.The differentiation,evolution and systematic relationship of Juglandales[J].Acta Phytotaxonomica Sinica,1990,28(2):96-102.
[15] 路安民.论胡桃科植物的地理分布[J].植物分类学报,1982,20(3):257-274.LU A M.On the geographic distribution of the Juglandaceae[J].Acta Phytotaxonomica Sinica,1982,20(3):257-274.
[16] 赵鹏,周惠娟,刘占林,等.胡桃属植物分子系统发育和生物地理研究进展[J].林业科学,2014,50(11):147-157.ZHAO P,ZHOU H J,LIU Z L,et al.A review of research progress on molecular phylogeny and biogeography in Juglans[J].Scientia Silvae Sinicae,2014,50(11):147-157.
[17] ZHAO P,ZHAO G F,ZHANG S X,et al.RAPD derived markers for separating Manchurian walnut (Juglans mandshurica) and Japanese walnut (J.ailantifolia) from close congeners [J].Journal of Systematics and Evolution,2014,52(1):101-111.
[18] ZHAO P,WOESTE K E.DNA markers identify hybrids between butternut (Juglans cinerea L.) and Japanese walnut (Juglans ailantifolia Carr.)[J].Tree Genetics & Genomes,2011,7(3):511533.
[19] ZHAO P,WOESTE K E,ZHANG S X.Molecular identification and genetic analysis of Juglans resources[M].Saarbrücken:Lambert Aacdemic Publishing,2012:3-20.
[20] ZHAO P,ZHANG S X,WOESTE K.Genotypic data changes family rank for growth and quality traits in a black walnut (Juglans nigra L.) progeny test[J].New Forests,2013,44(3):357-368.
[21] 胡昳恒,党萌,张甜,等.秦岭地区核桃自然群体和栽培群体的遗传多样性及其演化关系:基于nrDNA ITS序列分析[J].林业科学,2014,50(12):47-55.HU Y H,DANG M,ZHANG T,et al.Genetic diversity and evolutionary relationship of Juglans regia wild and domesticated populations in Qinling mountains based on nrDNA ITS sequences [J].Scientia Silvae Sinicae,2014,50(12):47-55.
[22] 张甜,王玛丽,赵鹏.基于核基因序列JRD5680的核桃群体遗传多样性和遗传结构研究 [J].植物研究,2016,36(2):232-241.ZHANG T,WANG M L,ZHAO P.Sequence analysis of nuclear DNA JRD5680 for determining genetic diversity and genetic structure analysis of common walnut (Juglans regia L.) [J].Bulletin of Botanical Research,2016,36(2):232-241.
[23] HU Z,ZHANG T,GAO X X,et al.De novo assembly and characterization of the leaf,bud,and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing[J].Molecular Genetics and Genomics:MGG,2016,291(2):849-862.
[24] BAI W N,LIAO W J,ZHANG D Y.Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia[J].The New Phytologist,2010,188(3):892-901.
[25] POTTER D,GAO F Y,BAGGETT S,et al.Defining the sources of Paradox:DNA sequence markers for North American walnut (Juglans L.) species and hybrids[J].Scientia Horticulturae,2002,94 (1/2):157-170.
[26] POLLEGIONI P,WOESTE K,OLIMPIERI I,et al.Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers[J].Tree Genetics & Genomes,2011,7(4):707-723.
[27] MALVOLTI M E,FINESCHI S,PIGLIUCCI M.Morphological integration and genetic variability in Juglans regia L.[J].Journal of Heredity,1994,85(5):389-394.
[28] STANFORD A M,HARDEN R,PARKS C R.Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data[J].American Journal of Botany,2000,87(6):872-882.
[29] FJELLSTROM R G,PARFITT D E.Phylogenetic analysis and evolution of the genus Juglans (Juglandaceae) as determined from nuclear genome RFLPs [J].Plant Systematics and Evolution,1995,197(1):19-32.
[30] HU Y H,DANG M,FENG X J,et al.Genetic diversity and population structure in the narrow endemic Chinese walnut Juglans hopeiensis Hu:Implications for conservation[J].Tree Genetics & Genomes,2017,13(4):91.
[31] HU Y H,WOESTE K E,ZHAO P.Completion of the chloroplast genomes of five Chinese Juglans and their contribution to chloroplast phylogeny[J].Frontiers in Plant Science,2017,7:1955.
[32] FENG X J,YUAN X Y,SUN Y W,et al.Resources for studies of iron walnut (Juglans sigillata) gene expression,genetic diversity,and evolution[J].Tree Genetics & Genomes,2018,14(4):51.
[33] MU X Y,SUN M,YANG P F,et al.Unveiling the identity of wenwan walnuts and phylogenetic relationships of Asian Juglans species using restriction site-associated DNA-sequencing[J].Frontiers in Plant Science,2017,8:1708.
[34] MANCHESTER S R.The fossil history of the Juglandaceae[M].Saint Louis:Missouri Botanical Garden,1987:1-37.
[35] 吴燕民,裴东,奚声珂,等.用RAPD分析麻核桃起源与分类地位[J].林业科学,1999,35(4):25-30.WU Y M,PEI D,XI S K.Analysis of the origin and the taxonomic position of Juglans hopeiensis using RAPF markers [J].Scientia Silvae Sinicae,1999,35(4):25-30.
[36] DANG M,ZHOU H J,WOESTE K E,et al.Comparative phylogeography of Juglans regia and J.mandshurica combining organellar and nuclear DNA markers to assess genetic diversity and introgression in regions of sympatry[J].Trees,2021,35(6):1993-2007.
[37] OREL G,MARCHANT A D,MCLEOD J A,et al.Characterization of 11 Juglandaceae genotypes based on morphology,cpDNA,and RAPD[J].HortScience,2003,38(6):1178-1183.
[38] ROGERS R.Temperate Ecosystems | Juglandaceae[M]//Encyclopedia of Forest Sciences.Amsterdam:Elsevier,2004:1427-1430.
[39] J?RGENSEN T,HAILE J,M?LLER P,et al.A comparative study of ancient sedimentary DNA,pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability[J].Molecular Ecology,2012,21(8):1989-2003.
[40] JANSSENS S B,KNOX E B,HUYSMANS S,et al.Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene:Result of a global climate change[J].Molecular Phylogenetics and Evolution,2009,52(3):806-824.
[41] GAO J,WANG B S,MAO J F,et al.Demography and speciation history of the homoploid hybrid pine Pinus densataon the Tibetan Plateau[J].Molecular Ecology,2012,21(19):4811-4827.
[42] QI X S,CHEN C,COMES H P,et al.Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae)[J].New Phytologist,2012,196(2):617-630.
[43] SUN Y W,HOU N,WOESTE K,et al.Population genetic structure and adaptive differentiation of iron walnut Juglans regia subsp.sigillata in southwestern China[J].Ecology and Evolution,2019,9(24):14154-14166.
[44] ZHANG W P,CAO L,LIN X R,et al.Dead-end hybridization in walnut trees revealed by large-scale genomic sequence data[J].Molecular Biology and Evolution,2022,39(1):msab308.
[45] HU Y H,WOESTE K E,DANG M,et al.The complete chloroplast genome of common walnut (Juglans regia) [J].Mitochondrial DNA Part B,Resources,2016,1(1):189-190.
[46] ALEXANDER D H,NOVEMBRE J,LANGE K.Fast model-based estimation of ancestry in unrelated individuals[J].Genome Research,2009,19(9):1655-1664.
[47] LIU J Q,SUN Y S,GE X J,et al.Phylogeographic studies of plants in China:Advances in the past and directions in the future[J].Journal of Systematics and Evolution,2012,50(4):267-275.
[48] QIU Y X,FU C X,COMES H P,et al.Plant molecular phylogeography in China and adjacent regions:Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora[J].Molecular Phylogenetics and Evolution,2011,59(1):225-244.
[49] ZHANG J B,LI R Q,XIANG X G,et al.Integrated fossil and molecular data reveal the biogeographic diversification of the eastern Asian-eastern North American disjunct hickory genus (Carya Nutt.) [J].PLoS One,2013,8(7):e70449.
[50] PEDERSEN M W,GINOLHAC A,ORLANDO L,et al.A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa [J].Quaternary Science Reviews,2013,75:161-168.
[51] LI Y,SMITH T,SVETLANA P,et al.Paleobiogeography of the lotus plant (Nelumbonaceae:Nelumbo):and its bearing on the paleoclimatic changes[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2014,399:284-293.
[52] GENG F,LEI M,ZHANG N,et al.Demographical complexity within walnut species provides insights into the heterogeneity of geological and climatic fluctuations in East Asia[J/OL].Journal of Systematics and Evolution.(2024-02-28)[2024-05-10].https:// doi.org/10.1111/jse.13061.
[53] WEN J.Evolution of eastern Asian-eastern North American biogeographic disjunctions:A few additional issues[J].International Journal of Plant Sciences,2001,162(S6):S117-S122.
[54] MA Z Y,NIE Z L,LIU X Q,et al.Phylogenetic relationships,hybridization events,and drivers of diversification of East Asian wild grapes as revealed by phylogenomic analyses[J].Journal of Systematics and Evolution,2023,61(2):273-283.
[55] QIAN H,RICKLEFS R E.Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America [J].Journal of Ecology,2004,92(2):253-265.
[56] XIANG Q Y J,ZHANG W H,RICKLEFS R E,et al.Regional differences in rates of plant speciation and molecularevolution:A comparison between eastern Asia and eastern North America [J].Evolution,2004,58(10):2175-2184.
[57] DONOGHUE M J,SMITH S A.Patterns in the assembly of temperate forests around the Northern Hemisphere[J].Philosophical Transactions of the Royal Society of London,Series B,Biological Sciences,2004,359(1450):1633-1644.
[58] HAMILTON J A,ECKERT C G.Population genetic consequences of geographic disjunction:A prairie plant isolated on Great Lakes alvars[J].Molecular Ecology,2007,16(8):1649-1660.
[59] ZHOU W B,SHI W,SOLTIS P S,et al.Foliar endophyte diversity in Eastern Asian-Eastern North American disjunct tree species-influences of host identity,environment,phylogeny,and geographic isolation[J].Frontiers in Plant Science,2023,14:1274746.
[60] CHEN J H,HAO Z D,GUANG X M,et al.Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J].Nature Plants,2019,5(1):18-25.
[61] COWMAN P F,BELLWOOD D R.Vicariance across major marine biogeographic barriers:Temporal concordance and the relative intensity of hard versus soft barriers[J].Proceedings Biological Sciences,2013,280(1768):20131541.
[62] KORALL P,PRYER K M.Global biogeography of scaly tree ferns (Cyatheaceae):Evidence for Gondwanan vicariance and limited transoceanic dispersal[J].Journal of Biogeography,2014,41(2):402-413.
[63] SAURA S,BODIN ?,FORTIN M J.EDITOR’S CHOICE:Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks[J].Journal of Applied Ecology,2014,51(1):171-182.
[64] SANZ M,SCHèNSWETTER P,VALLèS J,et al.Southern isolation and northern long-distance dispersal shaped the phylogeography of the widespread,but highly disjunct,European high mountain plant Artemisia eriantha (Asteraceae)[J].Botanical Journal of the Linnean Society,2014,174(2):214-226.
[65] AVISE J C.Phylogeography:The history and formation of species[M].Cambridge:Harvard University Press,2000:230-292.
[66] OTáLORA M A G,MARTíNEZ I,ARAGóN G,et al.Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern[J].American Journal of Botany,2010,97(2):216-223.
[67] BIRD C E,FERNANDEZ-SILVA I,SKILLINGS D J,et al.Sympatric speciation in the post “modern synthesis” era of evolutionary biology[J].Evolutionary Biology,2012,39(2):158180.
[68] RENAUT S,GRASSA C J,YEAMAN S,et al.Genomic islands of divergence are not affected by geography of speciation in sunflowers[J].Nature Communications,2013,4:1827.
[69] RENAUT S,OWENS G L,RIESEBERG L H.Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers [J].Molecular Ecology,2014,23(2):311-324.
[70] FITZPATRICK B M,TURELLI M.The geography of mammalian speciation:Mixed signals from phylogenies and range maps[J].Evolution,2006,60(3):601-615.
[71] KISEL Y,BARRACLOUGH T G.Speciation has a spatial scale that depends on levels of gene flow[J].The American Naturalist,2010,175(3):316-334.
[72] ZHENG X M,GE S.Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O.nivara)[J].Molecular Ecology,2010,19(12):2439-2454.
[73] BüSSE S,VON GRUMBKOW P,HUMMEL S,et al.Phylogeographic analysis elucidates the influence of the ice ages on the disjunct distribution of relict dragonflies in Asia[J].PLoS One,2012,7(5):e38132.
[74] GROSSENBACHER D L,VELOZ S D,SEXTON J P.Niche and range size patterns suggest that speciation begins in small,ecologically diverged populations in North American monkeyflowers (Mimulus spp.)[J].Evolution,2014,68(5):1270-1280.
[75] LI Q Q,KHASBAGAN,ZHANG Z P,et al.Plastid phylogenomics of the tribe potentilleae (Rosaceae)[J].Molecular Phylogenetics and Evolution,2024,190:107961.
[76] MA Z Y,NIE Z L,REN C,et al.Phylogenomic relationships and character evolution of the grape family (Vitaceae)[J].Molecular Phylogenetics and Evolution,2021,154:106948.
[77] MA Z Y,WEN J,ICKERT-BOND S M,et al.Phylogenomics,biogeography,and adaptive radiation of grapes[J].Molecular Phylogenetics and Evolution,2018,129:258-267.
[78] NIE Z L,SUN H,CHEN Z D,et al.Molecular phylogeny and biogeographic diversification of Parthenocissus (Vitaceae) disjunct between Asia and North America[J].American Journal of Botany,2010,97(8):1342-1353.
[79] WARREN D L,GLOR R E,TURELLI M.Environmental niche equivalency versus conservatism:Quantitative approaches to niche evolution[J].Evolution,2008,62(11):2868-2883.
[80] EVANS M E K,SMITH S A,FLYNN R S,et al.Climate,niche evolution,and diversification of the "bird-cage" evening primroses (Oenothera,sections Anogra and Kleinia)[J].American Naturalist,2009,173:225-240.
[81] DORMANN C F,GRUBER B,WINTER M,et al.Evolution of climate niches in European mammals?[J].Biology Letters,2010,6(2):229-232.
[82] NAKAZATO T,WARREN D L,MOYLE L C.Ecological and geographic modes of species divergence in wild tomatoes[J].American Journal of Botany,2010,97(4):680-693.
[83] BROWNSTEIN C D,NEAR T J.Phylogenetics and the Cenozoic radiation of lampreys[J].Current Biology,2023,33(2):397-404.
[84] BOJKO J,REINKE A W,STENTIFORD G D,et al.Microsporidia:A new taxonomic,evolutionary,and ecological synthesis[J].Trends in Parasitology,2022,38(8):642-659.
[85] BEATTY G E,PROVAN J.Refugial persistence and postglacial recolonization of North America by the cold-tolerant herbaceous plant Orthilia secunda[J].Molecular Ecology,2010,19(22):5009-5021.
[86] BEATTY G E,PROVAN J.Phylogeographic analysis of North American populations of the parasitic herbaceous plant Monotropa hypopitys L.reveals a complex history of range expansion from multiple late glacial refugia[J].Journal of Biogeography,2011,38(8):1585-1599.
[87] BEATTY G E,PROVAN J.Post-glacial dispersal,rather than in situ glacial survival,best explains the disjunct distribution of the Lusitanian plant species Daboecia cantabrica (Ericaceae)[J].Journal of Biogeography,2013,40(2):335-344.
[88] MORRONE J J.When phylogenetics met biogeography:Willi Hennig,Lars Brundin and the roots of phylogenetic and cladistic biogeography[J].Cladistics,2023,39(1):58-69.
[89] SKEMA C,JOURDAIN-FIEVET L,DUBUISSON J Y,et al.Out of Madagascar,repeatedly:The phylogenetics and biogeography of Dombeyoideae (Malvaceae s.l.)[J].Molecular Phylogenetics and Evolution,2023,182:107687.
[90] COWLING R M,LOMBARD A T.Heterogeneity,speciation/extinction history and climate:Explaining regional plant diversity patterns in the Cape Floristic Region[J].Diversity and Distributions,2002,8(3):163-179.
[91] CARSTENS B C,KNOWLES L L.Shifting distributions and speciation:Species divergence during rapid climate change[J].Molecular Ecology,2007,16(3):619-627.
[92] HUA X,WIENS J J.How does climate influence speciation?[J].The American Naturalist,2013,182(1):1-12.
[93] HADID Y,PAVLí?EK T,BEILES A,et al.Sympatric incipient speciation of spiny mice Acomys at “Evolution Canyon,” Israel[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(3):1043-1048.
[94] ALSOS I G,EHRICH D,THUILLER W,et al.Genetic consequences of climate change for northern plants[J].Proceedings Biological Sciences,2012,279(1735):2042-2051.
[95] WANG W,ORTIZ R C,JACQUES F M B,et al.Menispermaceae and the diversification of tropical rainforests near the Cretaceous—Paleogene boundary [J].New Phytologist,2012,195(2):470-478.
[96] HAMANN E,BLEVINS C,FRANKS S J,et al.Climate change alters plant—herbivore interactions[J].New Phytologist,2021,229(4):1894-1910.
[97] STEWART J R,STRINGER C B.Human evolution out of Africa:The role of refugia and climate change[J].Science,2012,335(6074):1317-1321.
[98] STEWART J R,LISTER A M,BARNES I,et al.Refugia revisited:Individualistic responses of species in space and time[J].Proceedings Biological Sciences,2010,277(1682):661-671.
[99] HEWITT G M.Quaternary phylogeography:The roots of hybrid zones[J].Genetica,2011,139(5):617-638.
[100] WANG I J,GLOR R E,LOSOS J B.Quantifying the roles of ecology and geography in spatial genetic divergence[J].Ecology Letters,2013,16(2):175-182.
[101] DAHAL N,KUMAR S,NOON B R,et al.The role of geography,environment,and genetic divergence on the distribution of pikas in the Himalaya[J].Ecology and Evolution,2020,10(3):1539-1551.
[102] STEWART J R.LISTER A M.Cryptic northern refugia and the origins of the modern biota[J].Trends in Ecology & Evolution,2001,16(11):608-613.
[103] TZEDAKIS P C,EMERSON B C,HEWITT G M.Cryptic or mystic?Glacial tree refugia in northern Europe[J].Trends in Ecology & Evolution,2013,28(12):696-704.
[104] ANGELIS K,áLVAREZ-CARRETERO S,DOS REIS M,et al.An evaluation of different partitioning strategies for Bayesian estimation of species divergence times[J].Systematic Biology,2018,67(1):61-77.
[105] TEJADA J V,ANTOINE P O,MüNCH P,et al.Bayesian total-evidence dating revisits sloth phylogeny and biogeography:A cautionary tale on morphological clock analyses[J].Systematic Biology,2024,73(1):125-139.
[106] LINDSEY C R,KNOLL A H,HERRON M D,et al.Fossil-calibrated molecular clock data enable reconstruction of steps leading to differentiated multicellularity and anisogamy in the Volvocine algae[J].BMC Biology,2024,22(1):79.
[107] JIA D R,ABBOTT R J,LIU T L,et al.Out of the Qinghai-Tibet Plateau:Evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippopha? rhamnoides (Elaeagnaceae)[J].New Phytologist,2012,194(4):1123-1133.
[108] ZHANG G Y,SONG Y T,CHEN N,et al.Chromosome-level genome assembly of Hippophae tibetana provides insights into high-altitude adaptation and flavonoid biosynthesis[J].BMC Biology,2024,22(1):82.
[109] HOBAN S M,BORKOWSKI D S,BROSI S L,et al.Range-wide distribution of genetic diversity in the North American tree Juglans cinerea:A product of range shifts,not ecological marginality or recent population decline[J].Molecular Ecology,2010,19(22):4876-4891.
[110] WANG W T,XU B,ZHANG D Y,et al.Phylogeography of postglacial range expansion in Juglans mandshurica (Juglandaceae) reveals no evidence of bottleneck,loss of genetic diversity,or isolation by distance in the leading-edge populations[J].Molecular Phylogenetics and Evolution,2016,102:255-264.
[111] HUANG W P,SUN H,DENG T,et al.Molecular phylogenetics and biogeography of the eastern Asian-eastern North American disjunct Mitchella and its close relative Damnacanthus (Rubiaceae,Mitchelleae)[J].Botanical Journal of the Linnean Society,2013,171(2):395-412.
[112] FICHANT T,LEDENT A,COLLART F,et al.Dispersal capacities of pollen,seeds and spores:Insights from comparative analyses of spatial genetic structures in bryophytes and spermatophytes[J].Frontiers in Plant Science,2023,14:1289240.
[113] OMONDI S F,GITHAE E W,KHASA D P.Long-distance gene flow in Acacia senegal:Hope for disturbed and fragmented populations[J].Ecology and Evolution,2023,13(7):e10292.
[114] LI E Z,WANG Y S,LIU K J,et al.Historical climate change and vicariance events contributed to the intercontinental disjunct distribution pattern of ash species (Fraxinus,Oleaceae)[J].Communications Biology,2024,7(1):603.
[115] LUO X,ZHOU H J,CAO D,et al.Domestication and selection footprints in Persian walnuts (Juglans regia)[J].PLoS Genetics,2022,18(12):e1010513.
[116] HAN H,WOESTE K E,HU Y H,et al.Genetic diversity and population structure of common walnut (Juglans regia) in China based on EST-SSRs and the nuclear gene phenylalanine ammonia-lyase (PAL)[J].Tree Genetics & Genomes,2016,12(6):111.
[117] DANG M,YUE M,ZHANG M,et al.Gene introgression among closely related species in sympatric populations:A case study of three walnut (Juglans)species[J].Forests,2019,10(11):965.
[118] MANNI F,GUéRARD E,HEYER E.Geographic patterns of (genetic,morphologic,linguistic) variation:How barriers can be detected by using Monmonier’s algorithm[J].Human Biology,2004,76(2):173-190.
[119] DARWIN C.On the origin of species by means of natural selection:Or,the preservation of favoured races in the struggle for life[M].London:John Murray,1859:7-19.
[120] HOSKIN C J,HIGGIE M,MCDONALD K R,et al.Reinforcement drives rapid allopatric speciation[J].Nature,2005,437(7063):1353-1356.
[121] APRIL J,HANNER R H,DION-C?Té A M,et al.Glacial cycles as an allopatric speciation pump in northeastern American freshwater fishes[J].Molecular ecology,2013,22(2):409-422.
[122] BECKER F S,ALEXANDER G J,TOLLEY K A.Substrate specialisation drives an unexpectedly diverse radiation in barking geckos (Ptenopus:Gekkonidae)[J].Molecular Phylogenetics and Evolution,2024,197:108104.
[123] GAVRILETS S.Perspective:Models of speciation:What have we learned in 40 years?[J].Evolution,2003,57(10):2197-2215.
[124] XIAO L Q,M?LLER M,ZHU H.High nrDNA ITS polymorphism in the ancient extant seed plant Cycas:Incomplete concerted evolution and the origin of pseudogenes[J].Molecular Phylogenetics and Evolution,2010,55(1):168-177.
[125] DUPIN J,HONG-WA C,GAUDEUL M,et al.Phylogenetics and biogeography of the olive family (Oleaceae)[J].Annals of Botany,2024:mcae100.
[126] ABBOTT R,ALBACH D,ANSELL S,et al.Hybridization and speciation[J].Journal of Evolutionary Biology,2013,26(2):229-246.
[127] PHILLIPSEN I C,KIRK E H,BOGAN M T,et al.Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects[J].Molecular Ecology,2015,24(1):54-69.
[128] BANK C,BüRGER R,HERMISSON J.The limits to parapatric speciation:Dobzhansky-Muller incompatibilities in a continent-island model[J].Genetics,2012,191(3):845-863.
[129] DIECKMANN U,DOEBELI M.On the origin of species by sympatric speciation[J].Nature,1999,400(6742):354-357.
[130] BARLUENGA M,ST?LTING K N,SALZBURGER W,et al.Sympatric speciation in Nicaraguan crater lake cichlid fish[J].Nature,2006,439(7077):719-723.
[131] NOSIL P.Speciation with gene flow could be common[J].Molecular Ecology,2008,17(9):21032106.
[132] SCHMID S,BACHMANN SALVY M,GARCIA JIMENEZ A,et al.Gene flow throughout the evolutionary history of a colour polymorphic and generalist clownfish[J].Molecular Ecology,2024,33(14):e17436.
[133] LIU J,NIE Z L,REN C,et al.Phylogenomics of Aralia sect.Aralia (Araliaceae):Signals of hybridization and insights into its species delimitations and intercontinental biogeography[J].Molecular Phylogenetics and Evolution,2023,181:107727.
[134] BOLTE C E,PHANNARETH T,ZAVALA-PAEZ M,et al.Genomic insights into hybrid zone formation:The role of climate,landscape,and demography in the emergence of a novel hybrid lineage[J].Molecular Ecology,2024,33(14):e17430.
[135] ROSSER N,SEIXAS F,QUESTE LM,et al.Hybrid speciation driven by multilocus introgression of ecological traits[J].Nature,2024,628(8009):811-817.
[136] WIESE J.Digest:Pelagic habitats promote speciation but constrain morphological evolution[J].Evolution,2024:qpae091.
[137] NOSIL P.Ecological speciation[M].Oxford:Oxford University Press,2012:280.
[138] SCHLUTER D.Evidence for ecological speciation and its alternative[J].Science,2009,323(5915):737-741.
[139] SCHLUTER D,CONTE G L.Genetics and ecological speciation[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106 (S1):9955-9962.
[140] SOBEL J M,CHEN G F,WATT L R,et al.The biology of speciation[J].Evolution,2010,64(2):295-315.
[141] MAYA-LASTRA C A,SWEENEY P W,EATON D A R,et al.Caught in the act:Incipient speciation at the southern limit of viburnum in the central Andes[J].Systematic Biology,2024:syae023.
[142] LI Y R,FRITSCH P W,ZHAO G G,et al.Population differentiation and dynamics of five pioneer species of Gaultheria from the secondary forests in subtropical China[J].BMC Plant Biology,2024,24(1):516.
[143] SUN P W,CHANG J T,LUO M X,et al.Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change[J].BMC Plant Biology,2024,24(1):279.
[144] CIANCHI R,ARDUINO P,MOSCO M C,et al.Evidence of hybrid speciation in the North American primroses Primula suffrutescensP.parryiP.rusbyi and P.angustifolia (Primulaceae)[J].Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology,2015,149(2):229-234.
[145] ROSSETTO M,ALLEN C B,THURLBY K A G,et al.Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient[J].BMC Evolutionary Biology,2012,12:149.
[146] SEXTON J P,HANGARTNER S B,HOFFMANN A A.Genetic isolation by environment or distance:Which pattern of gene flow is most common?[J].Evolution,2014,68(1):1-15.
[147] FRISTOE T S,BLEILEVENS J,KINLOCK N L,et al.Evolutionary imbalance,climate and human history jointly shape the global biogeography of alien plants[J].Nature Ecology & Evolution,2023,7(10):1633-1644.
[148] BROWN L E,KHAMIS K,WILKES M,et al.Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover[J].Nature Ecology & Evolution,2018,2(2):325-333.
[149] LI J,ZHENG Z,HUANG K Y,et al.Vegetation changes during the past 40,000 years in Central China from a long fossil record[J].Quaternary International,2013,310:221-226.
[150] SMITH T,ROSE K D,GINGERICH P D.Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(30):11223-11227.
[151] STANKOWSKI S.Ecological speciation in an island snail:Evidence for the parallel evolution of a novel ecotype and maintenance by ecologically dependent postzygotic isolation[J].Molecular Ecology,2013,22(10):2726-2741.
[152] SHAFER A B A,WOLF J B W.Widespread evidence for incipient ecological speciation:A meta-analysis of isolation-by-ecology[J].Ecology Letters,2013,16(7):940-950.
[153] R?S?NEN K,HENDRY A P.Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification[J].Ecology Letters,2008,11(6):624-636.
[154] SERVEDIO M R,HERMISSON J,VAN DOORN G S.Hybridization may rarely promote speciation[J].Journal of Evolutionary Biology,2013,26(2):282-285.
[155] NOSIL P,VINES T H,FUNK D J.Perspective:Reproductive isolation caused by natural selection against immigrants from divergent habitats[J].Evolution,2005,59(4):705-719.
[156] BOLNICK D I,NOSIL P.Natural selection in populations subject to a migration load[J].Evolution,2007,61(9):2229-2243.
[157] BRIDLE J R,POLECHOVá J,KAWATA M,et al.Why is adaptation prevented at ecological margins?New insights from individual-based simulations[J].Ecology Letters,2010,13(4):485-494.
[158] KARIMI N,KRIEG C P,SPALINK D,et al.Chromosomal evolution,environmental heterogeneity,and migration drive spatial patterns of species richness in Calochortus(Liliaceae)[J].Proceedings of the National Academy of Sciences of the United States of America,2024,121(10):e2305228121.
[159] PLATH M,PFENNINGER M,LERP H,et al.Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments[J].Evolution,2013,67(9):2647-2661.
[160] GARROWAY C J,RADERSMA R,SEPIL I,et al.Fine-scale genetic structure in a wild bird population:The role of limited dispersal and environmentally based selection as causal factors[J].Evolution,2013,67(12):3488-3500.
[161] FRANKHAM R,BALLOU J D,ELDRIDGE M D B,et al.Predicting the probability of outbreeding depression[J].Conservation Biology,2011,25(3):465-475.
[162] PEKKALA N,KNOTT K E,KOTIAHO J S,et al.The benefits of interpopulation hybridization diminish with increasing divergence of small populations[J].Journal of Evolutionary Biology,2012,25(11):2181-2183.
[163] SOULARUE J P,KREMER A.Assortative mating and gene flow generate clinal phenological variation in trees[J].BMC Evolutionary Biology,2012,12:79.
[164] BAI W N,YAN P C,ZHANG B W,et al.Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole-genome sequences[J].The New Phytologist,2018,217(4):1726-1736.
[165] BAI W N,ZENG Y F,LIAO W J,et al.Flowering phenology and wind-pollination efficacy of heterodichogamous Juglans mandshurica (Juglandaceae)[J].Annals of Botany,2006,98(2):397-402.
[166] AVNI R,NAVE M,BARAD O,et al.Wild emmer genome architecture and diversity elucidate wheat evolution and domestication[J].Science,2017,357(6346):93-97.
[167] DIAMOND J.Evolution,consequences and future of plant and animal domestication[J].Nature,2002,418(6898):700-707.
[168] GAUT B S,SEYMOUR D K,LIU Q P,et al.Demography and its effects on genomic variation in crop domestication[J].Nature Plants,2018,4(8):512-520.
[169] MEYER R S,DUVAL A E,JENSEN H R.Patterns and processes in crop domestication:An historical review and quantitative analysis of 203 global food crops[J].The New Phytologist,2012;196(1):29-48.
[170] HUANG X H,HUANG S W,HAN B,et al.The integrated genomics of crop domestication and breeding[J].Cell,2022,185(15):2828-2839.
[171] CHENG S F,FENG C,WINGEN L U,et al.Harnessing landrace diversity empowers wheat breeding[J].Nature,2024,632:823-831.
[172] MEYER R S,PURUGGANAN M D.Evolution of crop species:Genetics of domestication and diversification[J].Nature Reviews Genetics,2013,14(12):840-852.
[173] XIAO J,LIU B,YAO Y Y,et al.Wheat genomic study for genetic improvement of traits in China[J].Science China Life Sciences,2022,65(9):1718-1775.
[174] HAAS M,SCHREIBER M,MASCHER M.Domestication and crop evolution of wheat and barley:Genes,genomics,and future directions[J].Journal of Integrative Plant Biology,2019,61(3):204-225.
[175] FORNASIERO A,WING R A,RONALD P.Rice domestication[J].Current Biology,2022,32(1):R20-R24.
[176] IZAWA T.Reloading DNA history in rice domestication[J].Plant & Cell Physiology,2022,63(11):1529-1539.
[177] ZHANG J P,JIANG L P,YU L P,et al.Rice’s trajectory from wild to domesticated in East Asia[J].Science,2024,384(6698):901-906.
[178] YU H,LIN T,MENG X B,et al.A route to de novo domestication of wild allotetraploid rice[J].Cell,2021,184(5):1156-1170.
[179] STITZER M C,ROSS-IBARRA J.Maize domestication and gene interaction[J].The New Phytologist,2018,220(2):395-408.
[180] DONG Z B,ALEXANDER M,CHUCK G.Understanding grass domestication through maize mutants[J].The Trends in Genetics,2019,35(2):118-128.
[181] ABRAHAM-JUáREZ M J,BARNES A C,ARAGóN-RAYGOZA A,et al.The arches and spandrels of maize domestication,adaptation,and improvement[J].Current Opinion in Plant Biology,2021,64:102124.
[182] CHEN Q Y,LI W Y,TAN L B,et al.Harnessing knowledge from maize and rice domestication for new crop breeding[J].Molecular Plant,2021,14(1):9-26.
[183] ZHU G T,WANG S C,HUANG Z J,et al.Rewiring of the fruit metabolome in tomato breeding[J].Cell,2018,172(1/2):249-261.
[184] CONSORTIUM T G.The tomato genome sequence provides insights into fleshy fruit evolution[J].Nature,2012,485(7400):635-641.
[185] CHE G,ZHANG X L.Molecular basis of cucumber fruit domestication[J].Current Opinion in Plant Biology,2019,47:38-46.
[186] SEDIVY E J,WU F Q,HANZAWA Y.Soybean domestication:The origin,genetic architecture and molecular bases[J].The New Phytologist,2017,214(2):539-553.
[187] GAO L,GONDA I,SUN H H,et al.The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor[J].Nature Genetics,2019,51(6):1044-1051.
[188] UNVER T,WU Z Y,STERCK L,et al.Genome of wild olive and the evolution of oil biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America,2017,144(44):E9413-E9422.
[189] WU J,WANG Y T,XU J B,et al.Diversification and independent domestication of Asian and European pears[J].Genome Biology,2018,19(1):77.
[190] LI Y,CAO K,ZHU G R,et al.Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history[J].Genome Biology,2019,20(1):36.
[191] BERNARD A,LHEUREUX F,DIRLEWANGER E.Walnut:Past and future of genetic improvement[J].Tree Genetics & Genomes,2017,14(1):1.
[192] DING Y M,CAO Y,ZHANG W P,et al.Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication[J].Genome Biology,2022,23(1):145.
[193] MARTíNEZ-GARCíA P J,CREPEAU M W,PUIU D,et al.The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols[J].The Plant Journal,2016,87(5):507-532.
[194] CHEN L N,MA Q G,CHEN Y K,et al.Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers[J].Scientia Horticulturae,2014,168:240248.
[195] JI F Y,MA Q G,ZHANG W T,et al.A genome variation map provides insights into the genetics of walnut adaptation and agronomic traits[J].Genome Biology,2021,22(1):300.
[196] YANG C J,SAMAYOA L F,BRADBURY P J,et al.The genetic architecture of teosinte catalyzed and constrained maize domestication[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(12):5643-5652.
[197] HUANG X H,KURATA N,WEI X H,et al.A map of rice genome variation reveals the origin of cultivated rice[J].Nature,2012,490(7421):497-501.
[198] WU J,WANG L F,FU J J,et al.Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline[J].Nature Genetics,2020,52(1):118-125.
[199] CLARK R M,WAGLER T N,QUIJADA P,et al.A distant upstream enhancer at the maize domestication gene Tb1 has pleiotropic effects on plant and inflorescent architecture[J].Nature Genetics,2006,38(5):594-597.
[200] WU G A,TEROL J,IBANEZ V,et al.Genomics of the origin and evolution of Citrus[J].Nature,2018,554(7692):311-316.
[201] WANG L,HE F,HUANG Y,et al.Genome of wild mandarin and domestication history of mandarin[J].Molecular Plant,2018,11(8):1024-1037.
[202] ZHOU Y F,MASSONNET M,SANJAK J S,et al.Evolutionary genomics of grape (Vitis vinifera ssp.vinifera) domestication[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(44):11715-11720.
[203] ALLABY R G.Two domestications for grapes[J].Science,2023,379(6635):880-881.
[204] DIEZ C M,TRUJILLO I,MARTINEZ-URDIROZ N,et al.Olive domestication and diversification in the Mediterranean Basin[J].The New Phytologist,2015,206(1):436-447.
[205] GAUT B S,DíEZ C M,MORRELL P L.Genomics and the contrasting dynamics of annual and perennial domestication[J].Trends in Genetisc,2015,31(12):709-719.
[206] MCCLURE K A,SAWLER J,GARDNER K M,et al.Genomics:A potential panacea for the perennial problem[J].American Journal of Botany,2014,101(10):1780-1790.
[207] MILLER A J,GROSS B L.From forest to field:Perennial fruit crop domestication[J].American Journal of Botany,2011,98(9):1389-1414.
[208] HARFOUCHE A,MEILAN R,KIRST M,et al.Accelerating the domestication of forest trees in a changing world[J].Trends in Plant Science,2012,17(2):64-72.
[209] BAYAZIT S,KAZAN K,GüLBITTI S,et al.AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay,Turkey[J].Scientia Horticulturae,2007,111(4):394-398.
[210] ZOHARY D,HOPF M,WEISS E.Domestication of plants in the Old World:The origin and spread of domesticated plants in south-west Asia,Europe,and the Mediterranean Basin[M].4th ed.Oxford:Oxford University Press,2012:1-68.
[211] ROOR W,KONRAD H,MAMADJANOV D,et al.Population differentiation in common walnut (Juglans regia L.) across major parts of its native range—Insights from molecular and morphometric data[J].Journal of Heredity,2017,108(4):391-404.
[212] ZHANG B W,XU L L,LI N,et al.Phylogenomics reveals an ancient hybrid origin of the Persian walnut [J].Molecular Biology and Evolution,2019,36(11):2451-2461.
[213] WANG J T,YE H,ZHOU H J,et al.Genome-wide association analysis of 101 accessions dissects the genetic basis of shell thickness for genetic improvement in Persian walnut (Juglans regia L.)[J].BMC Plant Biology,2022,22(1):436.
[214] SONG B,NING W D,WEI D,et al.Plant genome resequencing and population genomics:Current status and future prospects[J].Molecular Plant,2023,16(8):1252-1268.
[215] LONG Q M,CAO S,HUANG G Z,et al.Population comparative genomics discovers gene gain and loss during grapevine domestication[J].Plant Physiology,2024,195(2):1401-1413.
[216] MARRANO A,BRITTON M,ZAINI P A,et al.High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome[J].GigaScience,2020,9(5):giaa050.
[217] STEVENS K A,WOESTE K,CHAKRABORTY S,et al.Genomic variation among and within six Juglans species[J].G3:Genes,Genomes,Genetics,2018,8(7):2153-2165.
[218] ZHU T T,WANG L,YOU F M,et al.Sequencing a Juglans regia×J.microcarpa hybrid yields high-quality genome assemblies of parental species[J].Horticulture Research,2019,6:55.
[219] ZHANG J P,ZHANG W T,JI F Y,et al.A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication[J].Plant Biotechnology Journal,2020,18(9):1848-1850.
[220] NING D L,WU T,XIAO L J,et al.Chromosomal-level assembly of Juglans sigillata genome using Nanopore,BioNano,and Hi-C analysis[J].GigaScience,2020,9(2):giaa006.
[221] WANG Y,YANG Y X,YUAN X L,et al.Draft genome sequence of endophytic fungus Talaromyces purpureogenuss train YAFEF302,isolated from Juglans sigillata[J].Microbiology Resource Announcements,2024,13(1):e0082923.
[222] YAN F,XI R M,SHE R X,et al.Improved de novo chromosome-level genome assembly of the vulnerable walnut tree Juglans mandshurica reveals gene family evolution and possible genome basis of resistance to lesion nematode[J].Molecular Ecology Resources,2021,21(6):2063-2076.
[223] LI X,CAI K W,ZHANG Q H,et al.The manchurian walnut genome:Insights into juglone and lipid biosynthesis[J].GigaScience,2022,11:giac057.
[224] ZHOU H J,YAN F,HAO F,et al.Pan-genome and transcriptome analyses provide insights into genomic variation and differential gene expression profiles related to disease resistance and fatty acid biosynthesis in eastern black walnut (Juglans nigra)[J].Horticulture Research,2023,10(3):uhad015.
[225] FITZ-GIBBON S,MEAD A,O’DONNELL S,et al.Reference genome of California walnut,Juglans californica,and resemblance with other genomes in the order Fagales[J].The Journal of Heredity,2023,114(5):570-579.
[226] HAN L Q,LUO X,ZHAO Y,et al.A haplotype-resolved genome provides insight into allele-specific expression in wild walnut (Juglans regia L.)[J].Scientific Data,2024,11(1):278.
[227] GUZMAN-TORRES C R,TRYBULEC E,LEVASSEUR H,et al.Conserving a threatened North American walnut:A chromosome-scale reference genome for butternut (Juglans cinerea)[J].G3:Genes,Genomes,Genetics,2024,14(2):jkad189.
[228] QU Y Q,SHANG X L,ZENG Z Y,et al.Whole-genome duplication reshaped adaptive evolution in a relict plant species,Cyclocarya paliurus[J].Genomics,Proteomics & Bioinformatics,2023,21(3):455-469.
[229] QU Y Q,SHANG X L,FANG S Z,et al.Genome assembly of two diploid and one auto-tetraploid Cyclocarya paliurus genomes[J].Scientific Data,2023,10(1):507.
[230] YU R M,ZHANG N,ZHANG B W,et al.Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus[J].BMC Biology,2023,21(1):168.
[231] DING Y M,PANG X X,CAO Y,et al.Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes[J].Nature Communications,2023,14(1):617.
[232] CAO Y,ALMEIDA-SILVA F,ZHANG W P,et al.Genomic insights into adaptation to karst limestone and incipient speciation in East Asian Platycarya spp.(Juglandaceae)[J].Molecular Biology and Evolution,2023,40(6):msad121.
[233] ZHOU H J,ZHANG X D,LIU H Z,et al.Chromosome-level genome assembly of Platycarya strobilacea[J].Scientific Data,2024,11(1):269.
[234] LIU H Z,ZHOU H T,YE H,et al.Integrated metabolomic and transcriptomic dynamic profiles of endopleura coloration during fruit maturation in three walnut cultivars[J].BMC Plant Biology,2024,24(1):109.
[235] MA J Y,ZUO D J,YE H,et al.Genome-wide identification,characterization,and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives J.mandshurica[J].BMC Plant Biology,2023,23(1):80.
[236] MA J Y,ZUO D J,ZHANG X D,et al.Genome-wide identification analysis of the 4-Coumarate:CoA ligase (4CL) gene family expression profiles in Juglans regia and its wild relatives J.Mandshurica resistance and salt stress[J].BMC Plant Biology,2024,24(1):211.
[237] LI M D,OU M W,HE X Z,et al.DNA methylation role in subgenome expression dominance of Juglans regia and its wild relative J.mandshurica[J].Plant Physiology,2023,193(2):1313-1329.
[238] ZHOU H J,MA J Y,LIU H Z,et al.Genome-wide identification of the CBF gene family and ICE transcription factors in walnuts and expression profiles under cold conditions[J].International Journal of Molecular Science,2023,25(1):25.
[239] CHEN F,CHEN J,WANG Z,et al.Genomics:Cracking the mysteries of walnuts[J].Jounal of Genetics,2019,98(2):33.
[240] CHEN M J,FAN W J,JI F Y,et al.Genome-wide identification of agronomically important genes in outcrossing crops using OutcrossSeq[J].Molecular Plant,2021,14(4):556-570.
[241] GUILLAUME C,ISABELLE C,MARC B,et al.Assessing frost damages using dynamic models in walnut trees:Exposure rather than vulnerability controls frost risks[J].Plant,Cell & Environment,2018,41(5):1008-1021.
[242] SONG J M,GUAN Z L,HU J L,et al.Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus[J].Nature Plants,2020,6(1):34-45.
[243] ZHOU R,DONG Y H,LIU X,et al.JrWRKY21 interacts with JrPTI5L to activate the expression of JrPR5L for resistance to Colletotrichum gloeosporioides in walnut[J].The Plant Journal,2022,111(4):1152-1166.
[244] ARAB M M,BROWN P J,ABDOLLAHI-ARPANAHI R,et al.Genome-wide association analysis and pathway enrichment provide insights into the genetic basis of photosynthetic responses to drought stress in Persian walnut[J].Horticulture Research,2022,9:uhac124.
[245] ARAB M M,MARRANO A,ABDOLLAHI-ARPANAHI R,et al.Combining phenotype,genotype,and environment to uncover genetic components underlying water use efficiency in Persian walnut[J].Journal of Experimental Botany,2020,71(3):1107-1127.
基本信息:
DOI:10.16152/j.cnki.xdxbzr.2024-05-003
中图分类号:Q941
引用信息:
[1]赵鹏.胡桃属植物演化历史和基因组学研究进展[J].西北大学学报(自然科学版),2024,54(05):785-810.DOI:10.16152/j.cnki.xdxbzr.2024-05-003.
基金信息:
国家自然科学基金(32370386,32070372,41471038,31200500); 陕西省杰出青年项目(2023-JC-JQ-22); 陕西省重点研发计划(2024NC-YBXM-064); 陕西基础科学(化学、生物)研究院基础科学研究计划重点项目(22JHZ005,23JHZ009)