nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.55 1024-1036
鄂尔多斯盆地东北部纸坊组咸水层分布及CO2地质封存潜力评价
基金项目(Foundation): 西北大学碳中和学院科技项目(YL-2022-38-1); 国家能源集团2021年度十大重点科技攻关项目(GJNY-21-51)
邮箱(Email): hongjun@nwu.edu.cn;
DOI: 10.16152/j.cnki.xdxbzr.2025-05-007
摘要:

CO2咸水层地质封存为有效的碳中和储备手段,鄂尔多斯盆地东北部纸坊组埋深适中,钻井成本相对较低,且与石油、天然气开发层位不存在冲突,对其咸水层发育分布规律及咸水层CO2地质封存潜力的研究,对开展研究区内CO2咸水层地质封存工程具有实践意义。纸坊组储层岩石类型主要为中粒岩屑长石砂岩和长石岩屑砂岩,填隙物均以胶结物为主,胶结物以蒙皂石、伊/蒙混层、绿/蒙混层为主。纸坊组平均孔隙度为12.55%,渗透率为4.54 mD,为低孔特低渗储层,孔隙类型主要为溶蚀粒间孔,溶蚀粒内孔次之,纸坊组平均最大孔喉半径为7.04μm,平均中值半径为0.25μm。纸坊组纸3段咸水层单层平均厚度6.7 m,累计厚度平均为15.6 m,纸4段咸水层单层平均厚度为5.1 m,累计厚度平均为11.7 m。咸水层厚度高值区受分流河道砂体控制,呈北北东向条带状分布。研究区纸坊组总封存量为13 461×104 t,西部计算单元埋深较大,储层温度和压力增大,储层状态下的CO2密度相较于东部增加,封存潜力更大。

Abstract:

CO2 geological storage in saline aquifers is an effective carbon neutrality technology. The Zhifang Formation has a moderate burial depth, relatively low drilling costs, and does not conflict with oil and gas development. Research on the development and distribution patterns of its saline aquifers and the potential for CO2 geological storage in these aquifers has practical significance for implement CO2 saline aquifer geological storage projects in the study area. The main rock types of the Zhifang Formation reservoir are medium-grained lithic feldspar sandstone and feldspathic lithic sandstone, with pore fillings primarily composed of cement, mainly montmorillonite, illite/montmorillonite mixed layers, and chlorite/montmorillonite mixed layers. The Zhifang Formation has an average porosity of 12.55% and permeability of 4.54 mD, classifying it as a low-porosity and ultra-low permeability reservoir. The main pore types are dissolution intergranular pores, followed by dissolution intragranular pores. The average maximum pore throat radius of the Zhifang Formation is 7.04 μm, with an average median radius of 0.25 μm. The pore distribution concentration in the 5th member of the Qian Formation is higher than that of the Zhifang Formation. The average single-layer thickness of the saline aquifer in the 3rd member of the Zhifang Formation is 6.7 m, with an average cumulative thickness of 15.6 m. The average single-layer thickness of the saline aquifer in the 4th member is 5.1 m, with an average cumulative thickness of 11.7 m. The high-value areas of the Zhifang Formation saline aquifer thickness are controlled by distributary channel sand bodies, showing a north-northeast trending strip distribution. The total storage capacity of the Zhifang Formation in the study area is 13 461×104 tons. Due to the greater burial depth in the western part of the study area, resulting in higher reservoir temperature and pressure, the CO2 density is increased compared to the eastern part, leading to greater storage potential.

参考文献

[1] 丁仲礼,段晓男,葛全胜,等.2050年大气CO2浓度控制:各国排放权计算[J].中国科学(D辑:地球科学),2009,39(8):1009-1027.DING Z L,DUAN X N,GE Q S,et al.Control of atmospheric CO2 concentrations by 2050:A calculation on the emission rights of different countries[J].Chinese Science(Series D:Earth Science),2009,39(8):1009-1027.

[2] Intergovernmental Panel on Climate Change (IPCC).Global warming of 1.5 ℃[M].Cambridge:Cambridge University Press,2023.

[3] 邹才能,薛华庆,熊波,等.“碳中和”的内涵、创新与愿景[J].天然气工业,2021,41(8):46-57.ZOU C N,XUE H Q,XIONG B,et al.Connotation,innovation and vision of “carbon neutral”[J].Natural Gas Industry,2021,41(8):46-57.

[4] MA J F,LI L,WANG H F,et al.Carbon capture and storage:History and the road ahead[J].Engineering,2022,14(7):33-43.

[5] 周守为,朱军龙.助力“碳达峰、碳中和”战略的路径探索[J].天然气工业,2021,41(12):1-8.ZHOU S W,ZHU J L.Exploration of ways to helping “carbon peak and neutrality” strategy[J].Natural Gas Industry,2021,41(12):1-8.

[6] BRADSHAW J,BACHU S,BONIJOLY D,et al.CO2 storage capacity estimation:Issues and development of standards[J].International Journal of Greenhouse Gas Control,2007,1(1):62-68.

[7] BACHU S,BONIJOLY D,BRADSHAW J,et al.CO2 storage capacity estimation:Methodology and gaps[J].International Journal of Greenhouse Gas Control,2007,1(4):430-443.

[8] 郭建强,文冬光,张森琦,等.中国二氧化碳地质储存潜力评价与示范工程[J].中国地质调查,2015,2(4):36-46.GUO J Q,WEN D G,ZHANG S Q,et al.Potential evaluation and demonstration project of CO2 geological storage in China[J].Geological Survey of China,2015,2(4):36-46.

[9] 刁玉杰,刘廷,魏宁,等.咸水层二氧化碳地质封存潜力分级及评价思路[J].中国地质,2023,50(3):943-951.DIAO Y J,LIU T,WEI N,et al.Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J].Geology in China,2023,50(3):943-951.

[10] 屈红军,李鹏,李严,等.咸水层CO2不同捕获机理封存量计算方法及应用范围[J].西北大学学报(自然科学版),2023,53(6):913-925.QU H J,LI P,LI Y,et al.Calculation and application scope of storage capacity of different CO2 trapping mechanisms in saline aquifers[J].Journal of Northwest University(Natural Science edition),2023,53(6):913-925.

[11] SHEN P P,LIAO X W,LIU Q J.Methodology for estimation of CO2 storage capacity in reservoirs[J].Petroleum Exploration and Development,2009,36(2),216-220.

[12] 曹默雷,陈建平.CO2深部咸水层封存选址的地质评价[J].地质学报,2022,96(5):1868-1882.CAO M L,CHEN J P.The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J].Acta Geologica Sinica,2022,96(5):1868-1882.

[13] 李小春,刘延锋,白冰,等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报,2006,25(5):963-968.LI X C,LIU Y F,BAI B et al.Ranking and screening of CO2 saline aquifer storage zones in China[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(5):963-968.

[14] 李琦,魏亚妮,刘桂臻.中国沉积盆地深部CO2地质封存联合咸水开采容量评估[J].南水北调与水利科技,2013,11(4):93-96.LI Q,WEI Y N,LIU G Z.Assessment of CO2 storage capacity and saline water development in sedimentary basins of China[J].South-to-North Water Transfers and Water Science & Technology,2013,11(4):93-96.

[15] RANAEE E,KHATTAR R,INZOLI F,et al.Assessment and uncertainty quantification of onshore geological CO2 storage capacity in China[J].International Journal of Greenhouse Gas Control,2022,121:103804.

[16] MEDINA E,LEVRESSE G,CARRERA-HERNáNDEZ J J,et al.A basin scale assessment framework of onshore aquifer-based CO2 suitability storage in Tampico Misantla basin,Mexico[J].International Journal of Greenhouse Gas Control,2023,125:103874.

[17] DE SILVA K,RANJITH P G.A study of methodologies for CO2 storage capacity estimation of saline aquifers[J].Fuel,2012,93:13-27.

[18] 孙玉景,周立发,霍斐斐.鄂尔多斯盆地马家沟组马五1亚段地层水特征及对CO2地质封存的意义[J].地球环境学报,2019,10(1):49-57.SUN Y J,ZHOU L F,HUO F F.Water characteristics of Majiagou formation Ma51 submember in Ordos Basin and the significance for CO2 geological sequestration[J].Journal of Earth Environment,2019,10(1):49-57.

[19] 路萍,白勇,刘伟刚,等.鄂尔多斯盆地马家沟组二氧化碳地质封存有利区优选[J].地质论评,2021,67(3):816-827.LU P,BAI Y,LIU W G,et al.Optimization of favorable areas for carbon dioxide geological storage in Majiagou Formation in Ordos Basin[J].Geological Review,2021,67(3) 816-827.

[20] 王力.鄂尔多斯盆地榆林地区山西组二氧化碳地质封存数值模拟研究[D].西安:西北大学,2014:1-90.

[21] 何斌,许天福,袁益龙,等.深部咸水层CO2注入能力影响因素分析:以鄂尔多斯盆地石千峰组为例[J].水文地质工程地质,2016,43(1):136-142.HE B,XU T F,YUAN Y L,et al.An analysis of the influence factors on CO2 injection capacity in a deep saline formation:A case study of Shiqianfeng Group in the Erdos Basin[J].Hydrogeology & Engineering Geology,2016,43(1):136-142.

[22] 张小莉,李亚军,冯淳,等.榆林-神木地区CO2咸水层封存甜点优选[J].西北大学学报(自然科学版),2023,53(6):900-912.ZHANG X L,LI Y J,FENG C,et al.Sweet spot selection in CO2 saline aquifers geological storage,Yulin-Shenmu Area[J].Journal of Northwest University(Natural Science edition),2023,53(6):900-912.

[23] XUE Q,ZHANG L W,XU L,et al.Computed X-ray tomography investigation of porosity and permeability of the Liujiagou Formation sandstone exposed to CO2-saturated brine[J].Acta Geologica Sinica (English Edition),2023,97(3):946-955.

[24] 孙腾民,刘世奇,汪涛.中国二氧化碳地质封存潜力评价研究进展[J].煤炭科学技术,2021:49(11):10-20.SUN T M,LIU S Q,WANG T.Research progress on potential evaluation of carbon dioxide geological storage in China[J].Coal Science and Technology,2021,49:10-20.

[25] 刘池洋,赵红格,桂小军,等.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J].地质学报,2006:80(5):617-638.LIU C Y,ZHAO H G,GUI X J,et al.Spatial-temporal coordinates of evolution-transformation of Ordos Basin and its response to hydrocarbon accumulation(mineralization)[J].Acta Geologica Sinica,2006,80(5):617-638.

[26] 王峰,刘玄春,邓秀芹,等.鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J].沉积学报,2017,35(6):1265-1273.WANG F,LIU X C,DENG X Q,et al.Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos basin[J].Acta Sedimentologica Sinica,2017,35(6):1265-1273.

[27] 郭艳琴,李文厚,郭彬程,等.鄂尔多斯盆地沉积体系与古地理演化[J].古地理学报,2019,21(2):293-318.GUO Y Q,LI W H,GUO B C,et al.Sedimentary system and paleogeographic evolution of Ordos Basin[J].Paleogeography,2019,21(2):293-318.

[28] 南德,靳志强,王海朋,等.咸水层CO2地质封存测井资料评价研究进展[J].测井技术,2022,46(3):241-250.NAN D,JIN Z Q,WANG H P,et al.Research progress of logging data evaluation of CO2 geological storage in saline aquifer[J].Well Logging Technology,2022,46(3):241-250.

[29] 刁玉杰,马鑫,李旭峰,等.咸水层CO2地质封存地下利用空间评估方法研究[J].中国地质调查,2021,8(4):87-91.DIAO Y J,MA X,LI X F,et al.Evaluation methods of underground space utilization for CO2 geological storage in deep saline aquifers[J].Geological Survey of China,2021,8(4):87-91.

[30] GOODMAN A,HAKALA A,BROMHAL G,et al.U.S.DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J].International Journal of Greenhouse Gas Control,2011,5(4):952-965.

[31] 王紫剑,唐玄,荆铁亚,等.中国年封存量百万吨级CO2 地质封存选址策略[J].现代地质,2022,36(5):1414-1431.WANG Z J,TANG X,JING T Y,et al.Million-ton CO2 geological storage site selection strategy in China[J].Geoscience,2022,36(5):1414-1431.

[32] 刘震,朱文奇,孙强,等.中国含油气盆地地温-地压系统[J].石油学报,2012,33(1):1-17.LIU Z,ZHU W Q,SONG Q,et al.Characteristics of geotemperature-geopressure systems in petroliferous basins of China[J].Acta Petrolei Sinica,2012,33(1):1-17.

[33] 任战利,张盛,高胜利,等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学(D辑:地球科学),2007,37(S1):23-32.REN Z L,ZHANG S,GAO S L,et al.Tectono-thermal evolution history of Ordos Basin and its significance for hydrocarbon accumulation and mineralization[J].Chinese Science (Series D:Earth Science),2007,37(S1):23-32.

[34] SPAN R,WAGNER W.A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J].Journal of Physical and Chemical Reference Data,1996,25(6):1509-1596.

[35] IEA Greenhouse Gas R&D Programme (IEA GHG).Development of storage coefficients for CO2 storage in deep saline formations[R/OL].(2009-10-13)[2025-02-15].https://globalccsinstitute.com/archive/hub/publications/96126/development-storage-coefficients-co2-storage-deep-saline-formations-technical-study.pdf.

基本信息:

DOI:10.16152/j.cnki.xdxbzr.2025-05-007

中图分类号:X701

引用信息:

[1]李鹏,屈红军,孙晓晗,等.鄂尔多斯盆地东北部纸坊组咸水层分布及CO_2地质封存潜力评价[J].西北大学学报(自然科学版),2025,55(05):1024-1036.DOI:10.16152/j.cnki.xdxbzr.2025-05-007.

基金信息:

西北大学碳中和学院科技项目(YL-2022-38-1); 国家能源集团2021年度十大重点科技攻关项目(GJNY-21-51)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文