nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.55 1009-1023
化子坪地区孔渗和矿物特征对CO2运移演化的影响
基金项目(Foundation): 国家重点研发计划(2018YFC0807801,2018YFB0605503); 国家自然科学基金(51804112); 自然资源部煤炭资源勘查与综合利用重点实验室开放基金(KF2021-5)
邮箱(Email):
DOI: 10.16152/j.cnki.xdxbzr.2025-05-006
摘要:

鄂尔多斯盆地是我国重要的能源化工基地,盆地内有大量的低成本、高浓度煤化工CO2气源和适宜CO2封存的低渗透油藏储存空间,是CCUS技术示范不可多得的“宝地”。但要实现低渗透油藏CO2高效驱油和有效封存仍面临着诸多挑战。以鄂尔多斯盆地延长组长6储层化子坪油区作为地质储存的目标层,开展了注入CO2与储层岩石发生地球化学反应过程的数值模拟,发现储层的初始孔隙度、渗透率和初始矿物组分对CO2的运移演化及储层水的化学变化都会产生影响。随着CO2的注入,原始矿物开始发生水文地球化学反应,部分矿物开始溶解,矿物溶解量由大到小排序为绿泥石>长石类>高岭石,矿物沉淀量排序为铁白云石>钠蒙脱石>方解石>菱镁矿>伊利石>石英。通过对储层沉淀矿物能否以固碳矿物稳定存在进行分析,最终确定目标储层的固碳矿物组合是铁白云石+菱镁矿。目标储层中固碳矿物的出现对实现地质封存具有一定的指示作用,经研究发现,铁白云石可作为鄂尔多斯盆地延长组地质封存过程中CO2存在与否的矿物示踪剂。

Abstract:

The Ordos Basin is an important energy and chemical base in China, with a large number of low-cost, high-concentration coal chemical CO2 sources and low-permeability reservoir storage space suitable for CO2 storage, making it an ideal candidate for CCUS technology demonstration. However, there are still many challenges to achieve efficient CO_2-EOR and effective storage in low-permeability reservoirs. In this paper, we take the Haziping reservoir of the Yanchang Formation in the Ordos Basin as the target layer for geological storage, and find that the original porosity, permeability and initial mineral fraction have different levels of influence on the evolution of CO2 transport and reservoir water chemistry changes through numerical simulations. As CO2 is injected, the original minerals begin to undergo hydrogeochemical reactions and some of the minerals begin to dissolve, with the dissolved amounts of minerals ranked from largest to smallest: chlorite, feldspar-like, kaolinite. Mineral precipitation amounts were ranked as follows: iron dolomite, sodium montmorillonite, calcite, magnesite, illite, quartz. By analysing whether the precipitated minerals can be stabilised as carbon fixing minerals in the reservoir, the final determination of the carbon fixing mineral combination in the target reservoir is iron dolomite+magnesite. The presence of carbon fixing minerals in the target reservoir is indicative of geological storage, and it was found that iron dolomite could be used as a mineral tracer for the presence of CO2 in the geological storage process.

参考文献

[1] 陈欢庆,胡永乐,田昌炳.CO2驱油与埋存研究进展[J].油田化学,2012,29(1):116-121.CHEN H Q,HU Y L,TIAN C B.Advances in CO2 displacing oil and CO2 sequestrated researches[J].Oilfield Chemistry,2012,29(1):116-121.

[2] 苏勃,高学杰,效存德.IPCC《全球1.5℃增暖特别报告》冰冻圈变化及其影响解读[J].气候变化研究进展,2019,15(4):395-404.SU B,GAO X J,XIAO C D.Interpretation of IPCC SR1.5 on cryosphere change and its impacts[J].Advances in Climate Change Research,2019,15(4):395-404.

[3] 王卓妮,袁佳双,庞博,等.IPCC AR6 WGIII 报告减缓主要结论、亮点和启示 [J].气候变化研究进展,2022,18 (5):531-537.WANG Z N,YUAN J S,PANG B,et al.The interpretation and highlights of IPCC AR6 WGIII report[J].Climate Change Research,2022,18 (5):531-537.

[4] IPCC.Global warming of 1.5 ℃[R/OL].(2018-10-12)[2025-02-11].https://www.ipcc.

[5] 中国地质调查局水文地质环境地质调查中心.中国二氧化碳地质封存选址指南研究[M].北京:地质出版社,2012.

[6] 李晓玉,窦烨炜,张悦,等.氨基功能化多孔材料吸附二氧化碳研究进展[J].材料导报,2018,32(S1):208-213.LI X Y,DOU Y W,ZHANG Y,et al.A review on the amine-functionalized porous materials for CO2 capture [J].Materials Reports 2018,32(S1):208-213.

[7] 张炜,李义连.二氧化碳储存技术的研究现状和展望[J].环境污染与防治,2006,28(12):950-953.ZHANG W,LI Y L.Research status and prospects of carbon dioxide storage technology [J].Environmental Pollution and Control,2006,28(12):950-953.

[8] 庞忠和,杨峰田,段忠丰.二氧化碳地质封存技术发展现状与展望[C]//第二届废物地下处置学术研讨会论文集.敦煌,2008:480-493.

[9] 宫玉菲.CO2封存物性参数分析及地质精准建模研究[D].湘潭:湖南科技大学,2020.

[10] 田海龙.CO2咸水岩相互作用对盖层封闭性影响研究:以鄂尔多斯盆地石千峰组泥岩盖层为例[D].长春:吉林大学,2014.

[11] 曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放:二氧化碳地下储存研究[J].中国科学基金,2004,18(4):196200.ZENG R S,SUN S,CHEN D H,et al.Decrease carbon dioxide emission into the atmosphere:Underground disposal of carbon dioxide[J].Bulletin of National Natural Science Foundation of China,2004,18(4):196-200.

[12] 任相坤,崔永君,步学朋,等.鄂尔多斯盆地CO2地质封存潜力分析[J].中国能源,2010,32(1):29-32.REN X K,CUI Y J,BU X P,et al.Analysis of CO2 storage potential in Ordos Basin [J].Energy of China,2010,32(1):29-32.

[13] 高瑞民,王宏.延长石油集团节能减排技术实践与挑战[J].低碳世界,2013,3(1):54-59.GAO R M,WANG H.Energy saving and emission reduction technology practices and challenges in Yanchang petroleum group [J].Low Carbon World,2013,3(1):54-59.

[14] XU T F,APPS J A,PRUESS K.Mineral sequestration of carbon dioxide in a sandstone-shale system[J].Chemical Geology,2005,217(3/4):295318.

[15] NOGUES J P,FITTS J P,CELIA M A,et al.Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks[J].Water Resources Research,2013,49(9):6006-6021.

[16] WANG Y,ZHANG L W,SOONG Y,etal.From core-scale experiment to reservoir-scale modeling:A scale-up approach to investigate reaction-induced permeability evolution of CO2 storage reservoir and caprock at a U.S.CO2 storage site[J].Computers & Geosciences,2019,125:5568.

[17] 刘思楠,张力为,苏学斌,等.二氧化碳咸水层封存条件矿物溶解与沉淀化学反应建模与参数取值综述[J].水利水电技术,2020,51(11):13-22.LIU S N,ZHANG L W,SU X B,et al.Review on modeling and parameter selection for chemical reactions of mineral dissolution and precipitation under the condition of CO2 sequestration in saline aquifers[J].Water Resources and Hydropower Engineering,2020,51(11):13-22.

[18] 莫绍星,龙星皎,李瀛,等.基于TOUGHREACT-MP的苏北盆地盐城组咸水层CO2矿物封存数值模拟[J].吉林大学学报(地球科学版),2014,44(5):1647-1658.MO S X,LONG X J,LI Y,et al.Numerical modeling of CO2 sequestration in the saline aquifer of Yancheng Formation in Subeibasin using TOUGHREACT-MP[J].Journal of Jilin University(Earth Science Edition),2014,44(5):1647-1658.

[19] 贺重阳,张倩,周柯,等.致密砂岩储层特征及储层分类:以鄂尔多斯盆地化子坪地区长6储层为例[J].化学工程与装备,2022(2):63-66.HE C Y,ZHANG Q,ZHOU K,et al.Characteristics of dense sandstone reservoirs and reservoir classification:A case study of Chang6 reservoir in Huaziping area,Ordos Basin [J].Chemical Engineering & Equipment,2022(2):63-66.

[20] DAI S X,DONG Y J,WANG F,et al.A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality[J].China Geology,2022(3):359-371.

[21] VANGENUCHTEN M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America Journal,1980,44(5):892-898.

[22] 赵宁宁.二氧化碳地质储存中储层孔渗及矿物特征对其运移演化的影响[D].长春:吉林大学,2018.

[23] 李亚美,成建梅,李敏敏,等.咸水在黏性土中迁移转化的试验研究[J].水资源保护,2015,31(3):88-93.LI Y M,CHENG J M,LI M M,et al.Experimental study on migration transformation in cohesive soil of salt water [J].Water Resources Protection,2015,31(3):88-93.

基本信息:

DOI:10.16152/j.cnki.xdxbzr.2025-05-006

中图分类号:TE357.7;X701

引用信息:

[1]戴世鑫,吴亦骁,廖厅.化子坪地区孔渗和矿物特征对CO_2运移演化的影响[J].西北大学学报(自然科学版),2025,55(05):1009-1023.DOI:10.16152/j.cnki.xdxbzr.2025-05-006.

基金信息:

国家重点研发计划(2018YFC0807801,2018YFB0605503); 国家自然科学基金(51804112); 自然资源部煤炭资源勘查与综合利用重点实验室开放基金(KF2021-5)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文