| 243 | 0 | 3 |
| 下载次数 | 被引频次 | 阅读次数 |
等温线模型可以预测碳捕集系统的性能,但目前的吸附等温线模型研究存在特定温度、压力范围内拟合结果不佳的问题,影响预测结果的可靠性。通过制备物理吸附剂13X、胺基吸附剂PEI-NS、PEI-Al2O3、TRI-Al2O3,并将实测得到的等温线与Langmuir、Freundlich、Sips、Toth 4种等温线模型进行拟合,分析并得到各吸附剂在不同温度下适用等温线模型。在25℃吸附,13X用Sips模型的拟合结果较好,胺基吸附剂使用Sips或Toth模型的拟合结果较好。对于胺基吸附剂PEI-NS、TRI-Al2O3,受到CO2物理吸附作用的影响大,使用单一等温线模型的拟合结果较差,针对该问题,提出分段拟合方法,在低压范围内的R2高于0.99,足以用于空气碳捕集的工况(大气中CO2压力约为0.4 mbar),证明该方法有助于大幅提升等温线模型拟合结果的精确性。
Abstract:The isotherm model can predict the performance of the carbon capture system. However, in the current research on the adsorption isotherm model, there is a problem of poor fitting results within specific temperature and pressure ranges, which affects the reliability of the prediction results. By preparing physical adsorbents 13X, amine-modified adsorbents PEI-NS, PEI-Al2O3, and TRI-Al2O3, and fitting the measured isotherms with four isotherm models of Langmuir, Freundlich, Sips, and Toth, the applicable isotherm models of each adsorbent at different temperatures were analyzed and obtained. Adsorption at 25 ℃, the fitting of 13X using the Sips model is better, and the fitting of amine-modified adsorbents using the Sips or Toth model is better. For the amine-modified adsorbents PEI-NS and TRI-Al2O3, they are greatly affected by the physical adsorption effect of CO2, and the fitting result using the single isotherm model is poor. To address this problem, a segmented fitting method is proposed, and the R2 in the low-pressure range is higher than 0.99. The working conditions sufficient for air carbon capture(the pressure of CO2 in the atmosphere is approximately 0.4 mbar), proving that this method is helpful to significantly improve the accuracy of the isotherm model fitting results.
[1] CHIQUIER S,PATRIZIO P,BUI M,et al.A comparative analysis of the efficiency,timing,and permanence of CO2 removal pathways[J].Energy & Environmental Science,2022,15(10):4389-4403.
[2] BUI M,ADJIMAN C S,BARDOW A,et al.Carbon capture and storage (CCS):The way forward[J].Energy & Environmental Science,2018,11(5):1062-1176.
[3] ZHU X C,XIE W W,WU J Y,et al.Recent advances in direct air capture by adsorption[J].Chemical Society Reviews,2022,51(15):6574-6651.
[4] ZHU X C,GE T S,WU J Y,et al.Large-scale applications and challenges of adsorption-based carbon capture technologies[J].Chinese Science Bulletin,2021,66(22):2861-2877.
[5] WANG J Y,FU R,WEN S K,et al.Progress and current challenges for CO2 capture materials from ambient air[J].Advanced Composites and Hybrid Materials,2022,5(4):2721-2759.
[6] GA S,LEE S,KIM J,et al.Isotherm parameter library and evaluation software for CO2 capture adsorbents[J].Computers & Chemical Engineering,2020,143:107105.
[7] YOUNG J,GARCíA-DíEZ E,GARCIA S,et al.The impact of binary water-CO2 isotherm models on the optimal performance of sorbent-based direct air capture processes[J].Energy & Environmental Science,2021,14(10):5377-5394.
[8] WANG J L,GUO X.Adsorption isotherm models:Classification,physical meaning,application and solving method[J].Chemosphere,2020,258:127279.
[9] PATEL H A,BYUN J,YAVUZ C T.Carbon dioxide capture adsorbents:Chemistry and methods[J].ChemSusChem,2017,10(7):1303-1317.
[10] STUCKERT A N,YANG R T.CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15[J].Environmental Science & Technology,2011,45(23):10257-10264.
[11] LEE J S,KIM J H,KIM J T,et al.Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite[J].Journal of Chemical & Engineering Data,2002,47(5):1237-1242.
[12] SERNA-GUERRERO R,BELMABKHOUT Y,SAYARI A.Modeling CO2 adsorption on amine-functionalized mesoporous silica:1.A semi-empirical equilibrium model[J].Chemical Engineering Journal,2010,161(1/2):173-181.
[13] LANGMUIR I.The constitution and fundamental properties of solids and liquids.part i.solids[J].Journal of the American Chemical Society,1916,38(11):2221-2295.
[14] MABUZA M,PREMLALL K,DARAMOLA M O.Modelling and thermodynamic properties of pure CO2 and flue gas sorption data on South African coals using Langmuir,Freundlich,Temkin,and extended Langmuir isotherm models[J].International Journal of Coal Science & Technology,2022,9(1):45.
[15] SIPS R.On the structure of a catalyst surface[J].The Journal of Chemical Physics,1948,16(5):490-495.
[16] WANG Y,LEVAN M D.Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel:Pure components[J].Journal of Chemical & Engineering Data,2009,54(10):2839-2844.
[17] WANG L F,YANG R T.Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density[J].The Journal of Physical Chemistry C,2011,115(43):21264-21272.
[18] WANG S F,LIU Y Z,ZHANG C Q,et al.The amine-functionalized alumina captures CO2 directly from the ambient air in the rotating adsorption bed[J].Chemical Engineering and Processing-Process Intensification,2024,199:109735.
[19] THOMMES M,KANEKO K,NEIMARK A V,et al.Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J].Pure and Applied Chemistry,2015,87(9/10):1051-1069.
[20] MURPHY O P,VASHISHTHA M,PALANISAMY P,et al.A review on the adsorption isotherms and design calculations for the optimization of adsorbent mass and contact time[J].ACS Omega,2023,8(20):17407-17430.
[21] LI K M,JIANG J G,TIAN S C,et al.Polyethyleneimine—nano silica composites:A low-cost and promising adsorbent for CO2 capture[J].Journal of Materials Chemistry A,2015,3(5):2166-2175.
[22] WIJESIRI R,KNOWLES G P,YEASMIN H,et al.CO2 capture from air using pelletized polyethylenimine impregnated MCF silica[J].Industrial & Engineering Chemistry Research,2019,58(8):3293-3303.
[23] GEBALD C,WURZBACHER J A,BORGSCHULTE A,et al.Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose[J].Environmental Science & Technology,2014,48(4):2497-2504.
[24] KIM K C,YOON T U,BAE Y S.Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials[J].Microporous and Mesoporous Materials,2016,224:294-301.
基本信息:
DOI:10.16152/j.cnki.xdxbzr.2025-05-011
中图分类号:X701;TQ424
引用信息:
[1]陈彦霖,周爱国,郑家乐,等.CO_2吸附剂制备及吸附等温线模型研究[J].西北大学学报(自然科学版),2025,55(05):1074-1084.DOI:10.16152/j.cnki.xdxbzr.2025-05-011.
基金信息:
国家自然科学基金(52376011); 中国石油集团科技项目(2022DJ6607)