nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.55 1049-1064
榆神地区长10_3亚段咸水层CO2地质封存潜力评价及靶区优选
基金项目(Foundation): 国家自然科学基金(42304119); 陕西省自然科学基础研究计划项目(2021JCW-04,2022JC-DW-09,2024JC-DXWT-06); 陕西省重点产业创新链项目(2023-ZDLSF-64); 陕西省厅市联动重点项目(2022GD-TSLD-45)
邮箱(Email): wanghf@nwu.edu.cn;
DOI: 10.16152/j.cnki.xdxbzr.2025-05-009
摘要:

评估CO2地质封存潜力以及选择优势靶区是咸水层CO2地质封存的关键,当前CO2地质封存潜力评价方法复杂、参数获取难度大且选址方法多样、选址指标尚不统一。利用钻井、测井、录井、完井等资料对榆林神木(以下简称榆神)地区二叠系上统石千峰组至三叠系上统延长组地层开展地层划分与对比、岩性、物性解释等工作,识别出榆神地区最适合CO2地质封存的咸水层,即上三叠统延长组长10_3亚段咸水层。根据地下咸水层展布特征,利用容积法完成该层封存潜力评价,结合榆神地区地面环境状况,实现地下+地面综合选址并提出影响选址的7个重要评价指标。最后基于靶区优选区块,开展了层次分析法和模糊综合评价法的靶区评价及排序。研究表明:长10_3亚段平均孔隙度9.40%、渗透率1.09 mD、咸水层平均厚度37 m,封存潜力约5.14×108 t,所圈定的区块A4是最适合CO2地质封存的优质靶区,具备优先开展CCS项目的条件,可为周边高碳排放企业就近实施CCS项目提供选址及潜力评价的指导。

Abstract:

Assessing the potential of CO2 geological storage and selecting advantageous targets are the key to the geological storage of CO2 in saline aquifers. At present, the evaluation methods of CO2 geological storage potential are complex, the parameters are difficult to obtain, the site selection methods are diverse, and the site selection indicators are not uniform.In this paper, the stratigraphic division and correlation, lithology and physical property interpretation of the Upper Permian ShiQianFeng formation to the Upper Triassic YanChang formation in YuLin-ShenMu area(Hereinafter referred to as “YuShen” area) have been carried out by using drilling, logging and well completion data, the Saline aquifer of Chang 10_3 sub-member of YanChang formation of Upper Triassic is the most suitable for CO2 geological storage in YuShen area. According to the distribution characteristics of underground Saline aquifer, the storage potential of it is evaluated by using the volumetric method, combined with the surface environment conditions of YuShen area, the paper realizes the comprehensive site selection of underground+ground and puts forward 7 important evaluation indexes that affect the site selection.Finally, based on the target optimization block, the evaluation and ranking of target area are carried out by AHP+Fuzzy mathematics comprehensive evaluation method.The results show that the average porosity of the Chang 10_3 sub-member is 9.40%, the permeability is 1.09mD, the average thickness of the saline aquifer is 37m, and the storage potential is about 5.14×108 t. The delineated block A4 is the most suitable high-quality target area for CO2 geological storage, which has the conditions to give priority to CCS projects, and can provide guidance for site selection and potential evaluation for surrounding high-carbon emission enterprises to implement CCS projects nearby.

参考文献

[1] 雍锐.西南油气田CCUS/CCS发展现状、优势与挑战[J].天然气工业,2024,44(4):11-24.YONG R.Development status,advantages and challenges of CCUS/CCS in PetroChina Southwest Oil & Gasfield Company[J].Natural Gas Industry,2024,44(4):11-24.

[2] IPCC.Special report on global warming of 1.5 ℃[M].Cambridge:Cambridge University Press,2018.

[3] WOODALL C M,MCQUEEN N,PILORGé H,et al.Utilization of mineral carbonation products:Current state and potential[J].Greenhouse Gases:Science and Technology,2019,9(6):1096-1113.

[4] AGENCY I E.Energy technology perspectives 2020-special report on carbon capture utilisation and storage:CCUS in clean energy transitions[M].Paris:OECD Publishing,2020.

[5] MA J F,LIL,WANG H F,et al.Carbon capture and storage:History and the road ahead[J].Engineering,2022,14:33-43.

[6] IZADPANAHI A,BLUNT M J,KUMAR N,et al.A review of carbon storage in saline aquifers:Mechanisms,prerequisites,and key considerations[J].Fuel,2024,369:131744.

[7] WORDEN R H.Carbon dioxide capture and storage(CCS)in saline aquifers versus depleted gas fields[J].Geosciences,2024,14(6):146.

[8] 肖贝,陈磊,杨皝,等.准噶尔盆地深部咸水层CO2地质封存适宜性及潜力评价[J].大庆石油地质与开发,2024,43(6):120-127.XIAO B,CHEN L,YANG H,et al.Suitability and potential evaluation of CO2 geological storagein deep saline aquifers of Junggar Basin[J].Petroleum Geology & Oilfield Development in Daqing,2024,43(6):120-127.

[9] BACHU S,BONIJOLY D,BRADSHAW J,et al.CO2 storage capacity estimation:Methodology and gaps[J].International Journal of Greenhouse Gas Control,2007,1(4):430-443.

[10] BRADSHAW J,BACHU S,BONIJOLY D,et al.CO2 storage capacity estimation:Issues and development of standards[J].International Journal of Greenhouse Gas Control,2007,1(1):62-68.

[11] 许晓艺,李琦,刘桂臻,等.基于多准则决策的CO2地质封存场地适宜性评价方法[J].第四纪研究,2023,43(2):551-559.XU X Y,LI Q,LIU G Z,et al.Suitability evaluation method for CO2 geological storage sites based on multi-criteria decision-making[J].Quaternary Sciences,2023,43(2):551-559.

[12] International Energy Agency.Technology roadmap-carbon capture and storage[EB/OL].(2010-10-20) [2025-02-12].https://www.iea.org/reports/technology-roadmap-carbon-capture-and-storage-2009.

[13] 熊鹏飞,方小宇,乐文喜,等.北部湾盆地涠西南凹陷咸水层CO2地质封存储盖优选及潜力评估[J].煤炭学报,2024,49(5):2405-2413.XIONG P F,FANG X Y,LE W X,et al.Reservoir-cap combination optimization and potential evaluation of CO2 geological storage in saline aquifer,in Wenxinan sag of Beibu Gulf Basin[J].Journal of China Coal Society,2024,49(5):2405-2413.

[14] 李小春,刘延锋,白冰,等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报,2006,25(5):963-968.LI X C,LIU Y F,BAI B,et al.Ranking and screening of CO2 saline aquifer storage zones in China[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(5):963-968.

[15] 张冰,梁凯强,王维波,等.鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J].非常规油气,2019,6(3):15-20.ZHANG B,LIANG K Q,WANG W B,et al.Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J].Unconventional Oil & Gas,2019,6(3):15-20.

[16] CO2CRC.Storage capacity estimation,site selection and charcaterization for CO2 storage projects[EB/OL].(2008-03-12) [2025-02-12].https://www.scribd.com/document/96564914/Storage-Capacity-Estimation-Site-Selection-and-Characterisation-for-CO2-Storage-Projects-CO2CRC-March-2008.

[17] 刁玉杰,张森琦,郭建强,等.深部咸水层二氧化碳地质储存场地选址储盖层评价[J].岩土力学,2012,33(8):2422-2428.DIAO Y J,ZHANG S Q,GUO J Q,et al.Reservoir and caprock evaluation of CO2 geological storage site selection in deep saline aquifers[J].Rock and Soil Mechanics,2012,33(8):2422-2428.

[18] 贺陆胜,万建华,张建强,等.CO2地质封存研究与中国CO2地质封存潜力评述[J].甘肃地质,2024,33(1):59-71.HE L S,WAN J H,ZHANG J Q,et al.CO2 geological sequestration and evaluation of CO2 geological sequestration potential in China[J].Gansu Geology,2024,33(1):59-71.

[19] 可行,陈建文,龚建明,等.珠江口盆地二氧化碳地质封存条件及源汇匹配性分析[J].海洋地质与第四纪地质,2023,43(2):55-65.KE X,CHEN J W,GONG J M,et al.Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin[J].Marine Geology & Quaternary Geology,2023,43(2):55-65.

[20] GRATALOUP S,BONIJOLY D,BROSSE E,et al.A site selection methodology for CO2 underground storage in deep saline aquifers:Case of the Paris Basin[J].Energy Procedia,2009,1(1):2929-2936.

[21] BACHU S.Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change[J].Environmental Geology,2003,44(3):277-289.

[22] DAVARAZAR M,JAHANIANFARD D,SHEIKHNEJAD Y,et al.Underground carbon dioxide sequestration for climate change mitigation:A scientometric study[J].Journal of CO2 Utilization,2019,33:179-188.

[23] 孙腾民,刘世奇,汪涛.中国二氧化碳地质封存潜力评价研究进展[J].煤炭科学技术,2021,49(11):10-20.SUN T M,LIU S Q,WANG T.Research advances on evaluation of CO2 geological storage potential in China[J].Coal Science and Technology,2021,49(11):10-20.

[24] OLDENBURG C M.Screening and ranking framework for geologic CO2 storage site selection on the basis of health,safety,and environmental risk[J].Environmental Geology,2008,54(8):1687-1694.

[25] 杨川枫,刘廷,程国强,等.宁夏地区咸水层CO2封存选区及潜力预测[J].水文地质工程地质,2024,51(4):21-32.YANG C F,LIU Y,CHENG G Q,et al.Potential prediction and storage area selection of CO2 geological storage in deep saline aquifers in Ningxia region[J].Hydrogeology & Engineering Geology,2024,51(4):21-32.

[26] 郑长远,白刚刚,师延霞,等.西宁盆地级(D级)CO2地质储存区域适宜性研究[J].青海大学学报,2016,34(4):1-8.ZHENG C Y,BAI G G,SHI Y X,et al.Geological storage suitability of carbon dioxide in Xining basin level(D)[J].Journal of Qinghai University,2016,34(4):1-8.

[27] 贾小丰,张杨,张徽,等.中国二氧化碳地质储存目标靶区筛选技术方法[J].吉林大学学报(地球科学版),2014,44(4):1314-1326.JIA X F,ZHANG Y,ZHANG H,et al.Method of target area selection of CO2 geological storage in China[J].Journal of Jilin University(Earth Science Edition),2014,44(4):1314-1326.

[28] 张小莉,李亚军,冯淳,等.榆林—神木地区CO2咸水层封存甜点优选[J].西北大学学报(自然科学版),2023,53(6):900-912.ZHANG X L,LI Y J,FENG C,et al.Sweet spot selection in CO2 saline aquifers geological storage,Yulin—Shenmu Area[J].Journal of Northwest University(Natural Science Edition),2023,53(6):900-912.

[29] 何斌,许天福,袁益龙,等.深部咸水层CO2注入能力影响因素分析:以鄂尔多斯盆地石千峰组为例[J].水文地质工程地质,2016,43(1):136-142.HE B,XU T F,YUAN Y L,et al.An analysis of the influence factors on CO2 injection capacity in a deepsaline formation:A case study of Shiqianfeng Group in the Ordos Basin[J].Hydrogeology & Engineering Geology,2016,43(1):136-142.

[30] LI Y,LI P,QU H J,et al.Potential evaluation of saline aquifers for the geological storage of carbon dioxide:A case study of saline aquifers in the Qian-5 member in northeastern Ordos Basin[J].China Geology,2024,7(1):12-25.

[31] 段毅,于文修,刘显阳,等.鄂尔多斯盆地长9油层组石油运聚规律研究[J].地质学报,2009,83(6):855-860.DUAN Y,YU W X,LIU X Y,et al.Oil migration and accumulation rules of Chang-9 oil-bearing formation in the Ordos Basin[J].Acta Geologica Sinica,2009,83(6):855-860.

[32] 傅于恒.鄂尔多斯盆地中东部太原组灰岩生烃潜力评价[D].荆州:长江大学,2023.

[33] 程逸凡.陇东地区延长组长9-长10古湖盆特征及其沉积响应[D].北京:中国石油大学(北京),2020.

[34] 王德潜,刘祖植,尹立河.鄂尔多斯盆地水文地质特征及地下水系统分析[J].第四纪研究,2005(1):6-14.WANG D Q,LIU Z Z,YIN L H,et al.Hydro-geological characteristics and groundwater systems of the Ordos Basin[J].Quaternary Sciences,2005(1):6-14.

[35] 周新平,邓秀芹,李士祥,等.鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J].岩性油气藏,2021,33(1):109-120.ZHOU X P,DENG X Q,LI S X,et al.Characteristics of formation water and its geological significance of lower combination of Yanchang Formation in Ordos Basin[J].Lithologic Reservoirs,2021,33(1):109-120.

[36] 王焰新,毛绪美,Donald DePaolo.CO2地质储存的纳米尺度流体-岩石相互作用研究[J].地球科学,2011,36(1):163-171.WANG Y X,MAO X M,DEPAOLO D.Nanoscale fluid-rock interaction in CO2 geological storage[J].Earth Science,2011,36(1):163-171.

[37] 闫华敏,李磊,李林涛,等.基于层次分析法和模糊评价法的中国近海盆地CO2封存适宜性评价[J].海洋地质前沿,2024,40(1):79-93.YAN H M,LI L,LI L T,et al.Suitability assessment on CO2 storage in offshore basins of China based on AHP and fuzzy comprehensive evaluation[J].Marine Geology Frontiers,2024,40(1):79-93.

[38] NI H L,BUMP A P,BAKHSHIAN S.An experimental investigation on the CO2 storage capacity of the composite confining system[J].International Journal of Greenhouse Gas Control,2024,134:104125.

[39] 张洪涛,文冬光,李义连,等.中国CO2地质埋存条件分析及有关建议[J].地质通报,2005,24(12):1107-1110.ZHANG H T,WEN D G,LI Y L,et al.Conditions for CO2 geological sequestration in China and some suggestions[J].Geological Bulletin of China,2005,24(12):1107-1110.

[40] IPCC.IPCC special report on carbon dioxide capture and storage[M].Cambridge:Cambridge University Press,2005:31-32.

[41] 任战利,张盛,高胜利,等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学(D辑:地球科学),2007,37(S1):23-32.

[42] 冯雪.鄂尔多斯盆地延长组湖盆充填演化对油气聚集的作用[D].西安:西安石油大学,2022.

[43] 梁凯强,王宏,杨红,等.二氧化碳地质封存层级和尺度划分标准探讨[J].中国石油和化工标准与质量,2018,38(15):7-8.

[44] 屈红军,李鹏,李严,等.咸水层CO2不同捕获机理封存量计算方法及应用范围[J].西北大学学报(自然科学版),2023,53(6):913-925.QU H J,LI P,LI Y,et al.Calculation and application scope of storage capacity of different CO2 trapping mechanisms in saline aquifers[J].Journal of Northwest University(Natural Science Edition),2023,53(6):913-925.

[45] GOODMAN A,HAKALA A,BROMHAL G,et al.U.S.DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J].International Journal of Greenhouse Gas Control,2011,5(4):952-965.

[46] 刁玉杰,刘廷,魏宁,等.咸水层二氧化碳地质封存潜力分级及评价思路[J].中国地质,2023,50(3):943-951.DIAO Y J,LIU T,WEI N,et al.Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J].Geology in China,2023,50(3):943-951.

[47] 王海柱,沈忠厚,李根生,等.CO2气体物性参数精确计算方法研究[J].石油钻采工艺,2011,33(5):65-67.WANG H Z,SHAN Z H,LI G S,et al.Research on the precise calculation method of physical parameters for CO2[J].Oil Drilling & Production Technology,2011,33(5):65-67.

[48] BACHU S.Review of CO2 storage efficiency in deep saline aquifers[J].International Journal of Greenhouse Gas Control,2015,40:188-202.

[49] VAN DER MEER L G H B,YAVUZ F.CO2 storage capacity calculations for the Dutch subsurface[J].Energy Procedia,2009,1(1):2615-2622.

[50] Carbon Sequestration Ledership Forum Technical Group.Carbon capture,utilisation and storage(CCUS) and energy intensive industries(EIIs):From energy/emission intensive industries to low carbon industries[EB/OL].(2019-09-15) [2025-02-12].https://fossil.energy.gov/archives/cslf/sites/default/files/documents/Task-Force-on-CCUS-for-Energy-Intensive-Industries-Final-Report.pdf.

[51] Department of Energy.Carbon sequestration atlas of the United States and Canada:Appendix A-Methodology for development of carbon sequestration capacity estimates[R].Morgantown:National Energy Technology Laboratory,2006.

[52] GORECKIC,SORENSENJ,BREMERJ,et al.Development of storage coefficients for CO2 storage in deep saline formations[EB/OL].(2009-11-13) [2025-02-12].https://ieaghg.org/publications/development-of-storage-coefficients-for-carbon-dioxide-storage-in-deep-saline-formations/.

[53] 罗伟,张洋,刘宁,等.松辽盆地中央坳陷区北部咸水层CO2储存场地适宜性评价与储量计算[J].安全与环境工程,2015,22(5):52-58.LUO W,ZHANG Y,LIU N,et al.Assessment of site suitability and the capacity of CO2 storage in deep aquifer in the northern central depression of Songliao Basin[J].Safety and Environmental Engineering,2015,22(5):52-58.

基本信息:

DOI:10.16152/j.cnki.xdxbzr.2025-05-009

中图分类号:P642.5;X701

引用信息:

[1]丁钊,王浩璠,马劲风,等.榆神地区长10_3亚段咸水层CO_2地质封存潜力评价及靶区优选[J].西北大学学报(自然科学版),2025,55(05):1049-1064.DOI:10.16152/j.cnki.xdxbzr.2025-05-009.

基金信息:

国家自然科学基金(42304119); 陕西省自然科学基础研究计划项目(2021JCW-04,2022JC-DW-09,2024JC-DXWT-06); 陕西省重点产业创新链项目(2023-ZDLSF-64); 陕西省厅市联动重点项目(2022GD-TSLD-45)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文