| 46 | 0 | 3 |
| 下载次数 | 被引频次 | 阅读次数 |
已有实验研究发现,帕金森患者基底神经节[主要是丘脑底核(STN)及外侧苍白球(GPe)]的神经元群与大脑皮层的神经元群会产生频率介于13~30 Hz的同步异常β振荡;而且在该疾病中外侧苍白球的功能具有异质性,即可将其分为A型和Ⅰ型2类。为了探讨突触时滞对这种异常β振荡出现的影响,建立了一个包含STN、A型GPe、Ⅰ型GPe及兴奋与抑制性皮层神经元群的均场模型,并运用Hopf分岔理论研究了突触传输时滞对异常β振荡的调控作用。考虑到该模型中突触权重难以准确测量,进一步运用多项式混沌展开和Sobol灵敏度分析对该参数进行了不确定性量化分析。研究表明,皮层对STN的兴奋性连接权重以及A型GPe对STN的抑制性连接权重是调控该模型中异常振荡频率的主要因素。研究还表明:在间接调控STN活动的突触权重中,皮层内部连接权重的改变对异常振荡频率也具有较大的影响。
Abstract:Experimental studies have found that the basal ganglia neurons(mainly the subthalamic nucleus(STN) and the globus pallidus pars externa(GPe)) and the cortical neurons produce synchronous abnormal β oscillations with frequencies ranging from 13~30 Hz in Parkinson's patients. Moreover, it was found that the GPe exists function heterogeneity in the disease, and it can be classified into two types: type-A and type-Ⅰ. In order to investigate the effect of synaptic transmission delay on the occurrence of abnormal β oscillations, a mean field model which includes STN, A-type GPe, Ⅰ-type GPe, as well as excitatory and inhibitory cortical neuron populations was established. The regulatory effect of synaptic transmission delay on abnormal β oscillations was studied with Hopf bifurcation theory. Considering the difficulty in accurately measuring synaptic weights in this model, we further conducted uncertainty quantification on the parameters with polynomial chaos expansion and Sobol' sensitivity analysis. It was revealed that the excitatory connection weight from cortex to the STN and the inhibitory connection weight from type-A GPe to the STN are the main factors regulating the oscillation frequency in the model. Meanwhile, within the synaptic weights that indirectly regulate STN activity, changes in cortical connection weights also have a significant impact on the oscillation frequency of the model.
[1] BLOEM B R,OKUN M S,KLEIN C.Parkinson’s disease[J].The Lancet,2021,397(10291):2284-2303.
[2] YANG B J,YANG Z Q,HAO L J.Dynamics of a model for the degradation mechanism of aggregated α-synuclein in Parkinson’s disease[J].Frontiers in Computational Neuroscience,2023,17:1068150.
[3] HAMMOND C,BERGMAN H,BROWN P.Pathological synchronization in Parkinson’s disease:Networks,models and treatments[J].Trends in Neurosciences,2007,30(7):357-364.
[4] BERGMAN H,FEINGOLD A,NINI A,et al.Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates[J].Trends in Neurosciences,1998,21(1):32-38.
[5] BROWN P.Bad oscillations in Parkinson’s disease[C]//Parkinson’s Disease and Related Disorders.Vienna:Springer,2006:27-30.
[6] KüHN A A,TROTTENBERG T,KIVI A,et al.The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease[J].Experimental Neurology,2005,194(1):212-220.
[7] MATHIOPOULOU V,LOFREDI R,FELDMANN L K,et al.Modulation of subthalamic beta oscillations by movement,dopamine,and deep brain stimulation in Parkinson’s disease[J].NPJ Parkinson’s Disease,2024,10(1):1-7.
[8] GUERRA A,COLELLA D,GIANGROSSO M,et al.Driving motor cortex oscillations modulates bradykinesia in Parkinson’s disease[J].Brain,2022,145(1):224-236.
[9] NEVADO-HOLGADO A J,MALLET N,MAGILL P J,et al.Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations[J].The Journal of Physiology,2014,592(7):1429-1455.
[10] PAVLIDES A,HOGAN S J,BOGACZ R.Computational models describing possible mechanisms for generation of excessive beta oscillations in Parkinson’s disease[J].PLoS Computational Biology,2015,11(12):e1004609.
[11] ZHAO J Y,LIU Q S,BI Y H,et al.Analyses of conditions for generating beta oscillations in the Cortex-Subthalamic Nucleus-Globus Pallidus model[J].Modern Physics Letters B,2020,34(13):2050134.
[12] CHEN Y Q,NAKAO H,KANG Y M.Emergence of pathological beta oscillation and its uncertainty quantification in a time-delayed feedback Parkinsonian model[J].Chaos,Solitons & Fractals,2024,185:115113.
[13] CHEN Y Q,WANG J S,KANG Y M,et al.Emergence of beta oscillations of a resonance model for Parkinson’s disease[J].Neural Plasticity,2020,1:8824760.
[14] WANG X M,YU Y,HAN F,et al.Dynamical mechanism of parkinsonian beta oscillation in a heterogenous subthalamopallidal network[J].Nonlinear Dynamics,2023,111(11):10505-10527.
[15] LIU C,WANG J,DENG B,et al.Noise-induced improvement of the parkinsonian state:A computational study[J].IEEE Transactions on Cybernetics,2019,49(10):3655-3664.
[16] WANG X M,YU Y,WANG Q Y.Modulating propagation of Parkinsonian beta oscillations with transcranial direct current stimulation:A computational study[J].Chaos,Solitons & Fractals,2024,189:115635.
[17] MAGILL P J,BOLAM J P,BEVAN M D.Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network[J].Neuroscience,2001,106(2):313-330.
[18] SMITH Y,RAJU D,NANDA B,et al.The thalamostriatal systems:Anatomical and functional organization in normal and parkinsonian states[J].Brain Research Bulletin,2009,78(2/3):60-68.
[19] JANEZIC S,THRELFELL S,DODSON P D,et al.Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model[J].Proceedings of the National Academy of Sciences,2013,110(42):4016-4025.
[20] PICCONI B,PICCOLI G,CALABRESI P.Synaptic dysfunction in Parkinson’s disease[J].Advances in Experimental Medicine and Biology,2012,970:553-572.
[21] DI MAIO V.The glutamatergic synapse:A complex machinery for information processing[J].Cognitive Neurodynamics,2021,15(5):757-781.
[22] DIEDERICH N J,UCHIHARA T,GRILLNER S,et al.The evolution-driven signature of Parkinson’s disease[J].Trends in Neurosciences,2020,43(7):475-492.
[23] GOLDBERG J A,ROKNI U,BORAUD T,et al.Spike synchronization in the cortex-basal ganglia networks of parkinsonian primates reflects global dynamics of the local field potentials[J].The Journal of Neuroscience,2004,24(26):6003-6010.
[24] KOELMAN L A,LOWERY M M.Beta-band resonance and intrinsic oscillations in a biophysically detailed model of the subthalamic nucleus-globus pallidus network[J].Frontiers in Computational Neuroscience,2019,13:77.
[25] SUDRET B.Global sensitivity analysis using polynomial chaos expansions[J].Reliability Engineering & System Safety,2008,93(7):964-979.
[26] CRESTAUX T,LE MAITRE O,MARTINEZ J M.Polynomial chaos expansion for sensitivity analysis[J].Reliability Engineering & System Safety,2009,94(7):1161-1172.
[27] XIU D B,KARNIADAKIS G E.The Wiener:Askey polynomial chaos for stochastic differential equations[J].SIAM Journal on Scientific Computing,2002,24(2):619-644.
基本信息:
DOI:10.16152/j.cnki.xdxbzr.2025-05-012
中图分类号:R742.5;O175
引用信息:
[1]陈亚倩,康艳梅,高凤银.含GPe异质性的帕金森模型中异常β振荡的出现及不确定量化分析[J].西北大学学报(自然科学版),2025,55(05):1085-1094.DOI:10.16152/j.cnki.xdxbzr.2025-05-012.
基金信息:
国家自然科学基金(12172268); 陕西省自然科学基金(2023-JC-YB-069); 广东省动力系统与神经系统交叉研究重点实验室开放课题(DSN2025003)